

Instrukcja użytkownika sterownika samoczynnego załączania rezerwy ATS-1000

Spis treści

1.	Wprowadzenie3
2.	Montaż w panelu4
3.	Wyprowadzenia zewnętrzne5
4.	Panel przedni6
5.	Konfiguracja sterownika7
6.	Obsługa sterownika12
7.	Podgląd parametrów pracy13
8.	Zasady pomiaru napięć i asymetrii14
9.	Konfiguracja sieć-sieć – podstawowy schemat połączeń16
10.	Konfiguracja sieć-agregat – podstawowy schemat połączeń17
11.	Algorytm sterowania agregatem18
12.	Parametry techniczne
Załą	cznik A Protokół MODBUS22
A.1.	Parametry transmisji RS-48522
A.2.	Format ramki danych MODBUS22
A.3.	Obsługiwane ramki danych MODBUS23

1. Wprowadzenie

Sterownik ATS-1000 jest układem kontrolnym przeznaczonym do realizacji układów samoczynnego załączania rezerwy SZR.

Posiada możliwość monitoringu napięć fazowych L-N dwóch sieci – podstawowej PRI oraz rezerwowej SEC. Może zostać skonfigurowany do pracy w sieciach jednofazowych lub trójfazowych zapewniając kontrolę asymetrii oraz kierunku wirowania faz.

Sterownik ATS-1000 posiada wbudowaną obsługę czterech konfiguracji sieci: sieć-sieć, sieć-sieć-sprzęgło, sieć-agregat oraz sieć-agregat-sprzęgło.

Zaimplementowana kontrola agregatu prądotwórczego umożliwia automatyczny start w przypadku zaniku zasilania podstawowego, sterowanie ssaniem oraz opcjonalny monitoring gotowości agregatu do przejęcia obciążenia.

Zastosowanie wyświetlacza tekstowego oraz klawiatury umożliwia wygodną konfigurację sterownika oraz przejrzysty monitoring parametrów pracy bez podłączania do komputera PC. Pełny opis parametrów dostępny na wyświetlaczu urządzenia ułatwia jego programowanie i eliminuje potrzebę znajomości kodów ustawień poszczególnych parametrów.

W sterowniku ATS-1000 zastosowano złącze USB typu B służące do podłączenia układu do komputera PC. Za pomocą specjalnie przygotowanej aplikacji możliwe jest pełne skonfigurowanie sterownika, monitoring bieżących parametrów pracy oraz podgląd historii zdarzeń. Logowanie zdarzeń może być szczególnie pomocne podczas analizy stanów awaryjnych i usuwania przyczyn potencjalnego uszkodzenia systemu.

Wbudowany interfejs MODBUS-RTU służy do zdalnego monitoringu sterownika ATS-1000. Umożliwia integrację z zewnętrznymi urządzeniami, takimi jak sterowniki programowalne lub panele operatorskie.

2. Montaż w panelu

Sterownik ATS-1000 posiada obudowę panelową o wymiarach przedstawionych na *Rysunek 1*. Przed instalacją sterownika w panelu operatorskim należy przygotować wycięcie o wymiarach pokazanych na *Rysunek 2*, w którym obudowa zostanie zamocowana. Poza wycięciem w kształcie prostokąta nie ma potrzeby wiercenia dodatkowych otworów. Obudowa w panelu operatorskim mocowana jest za pomocą czterech śrubowych uchwytów bocznych.

Rysunek 2: Wymiary wycięcia w panelu operatorskim

3. Wyprowadzenia zewnętrzne

Sterownik ATS-1000 posiada na tylniej ściance złącza śrubowe służące do przyłączenia przewodów. Umiejscowienie złącz przedstawiono na *Rysunek 3*.

Rysunek 3: Rozłożenie wyprowadzeń na tylnej ściance sterownika

Tabela 1: O	pis złącz i w	vyprowadzeń
-------------	---------------	-------------

-1	
Złącze	Funkcja
	wejscia pomiarowe sieci podstawowej PRI oraz rezerwowej SEC
	L1, L2, L3 - zaciski przewodów fazowych
	N - zaciski przewodu neutralnego
111-013	W przypadku konfiguracji sterownika dla zasilania jednofazowego napięcie mierzone podłaczyć do zacisków
	L1 i N. Pozostałe wejścia L2 i L3 pozostawić wolne.
	Złącze interfejsu MODBUS
	A - wyjście linii A interfejsu RS-485
	B - wyjście linii B interfejsu RS-485
MODBUS	SG - masa sygnałowa interfejsu RS-485 (Signal Ground)
	$ extsf{TR}$ - wyjście rezystora terminującego 120 Ω ; zewrzeć z zaciskiem A w celu uzyskania terminacji
	Uwaga!!! Interfejs MODBUS nie jest izolowany od układu kontrolnego sterownika. W przypadku konieczności
	zapewnienia izolacji zastosować zewnętrzny izolowany repeater RS-485.
LICR	Złącze USB
030	Złącze USB do komunikacji z aplikacją PC.
	Kontrolne wejścia cyfrowe
	COMMON - biegun wspólny; podłączenie wejścia do zacisku COMMON oznacza stan wysoki
	Q1 ON - kontrola zamknięcia wyłącznika Q1; podłączyć do styku pomocniczego normalnie otwartego
	Q2 ON - kontrola zamknięcia wyłącznika Q2
	Q3 ON - kontrola zamknięcia wyłącznika Q3
DIGITAL	Q1 TRIP - kontrola wyzwolenia wyłącznika Q1; podłączyć do styku pomocniczego normalnie zamkniętego
INPUTS	UZ I KIF - KUTUTUJA WYZWUJENIJA WYJĄCZNIKA UZ GEN RDV – wojście kontrolne gotowości ogragatu do przejecia obciażania – aktywyny stan wysoki
	IDIE - załaczenie blokady zewnetrznej - aktywny stan wysoki
	IOCK - załączenie opcionalnej blokady zewnętrznej - aktywny stan wysoki
	FIRE - zgłoszenie alarmu pożarowego - aktywny stan niski
	Wejście zasilania DC układu sterownika
	+ - wejscie bieguna dodatniego
DC SUPPLY	– - wejscie pieguna ujemnego
	PE - zacisk przewodu uziemiającego
	Uwaga!!! Wejście zasilania nie jest galwanicznie izolowane od układu sterującego
RELAY	Wyjścia przekaźnikowe
OUTPUTS	Q1 - sterowanie zamknięciem wyłącznika Q1

Q2 - sterowanie zamknięciem wyłącznika Q2 Q3 - sterowanie zamknięciem wyłącznika Q3 GEN START - wyjście sterujące załączeniem generatora prądotwórczego SUC - sterowanie ssaniem generatora ALM - zgłoszenie alarmu krytycznego powodującego zatrzymanie pracy sterownika

4. Panel przedni

Na panelu przednim sterownika ATS-1000 (*Rysunek 4*) umieszczono wyświetlacz alfanumeryczny, klawiaturę oraz diody LED sygnalizujące stan pracy urządzenia.

Rysunek 4: Panel czołowy sterownika

Diody LED

PRI	Stan zasilania sieci podstawowej PRI Dioda świeci w kolorze zielonym, gdy napięcia fazowe mieszczą się w ustawionych granicach, kierunek faz jest zgodny, a wartość asymetrii poniżej zadanego progu. W przeciwnym razie dioda świeci w kolorze czerwonym. Dla zasilania jednofazowego mierzone jest wyłącznie napięcie L1-N, a pozostałe parametry są ignorowane.		
SEC	Stan zasilania sieci podstawowej SEC Analogicznie jak dla sieci PRI.		
Q1	Stan załączenia wyłącznika Q1 Dioda świeci w kolorze zielonym, jeżeli styk pomocniczy Q1 aktywował wejście cyfrowe Q1 ON. Dioda sygnalizuje stan styku pomocniczego, a nie załączenie wyjścia przekaźnikowego Q1.		
Q2	Stan załączenia wyłącznika Q2 Analogicznie jak dla Q1.		
Q3	Stan załączenia wyłącznika Q3 Analogicznie jak dla Q1.		
Alarm	Sygnalizacja alarmu sterownika Światło ciągłe oznacza wystąpienie alarmu krytycznego powodującego zatrzymanie pracy sterownika. Światło pulsujące sygnalizuje błąd uruchomienia generatora prądotwórczego, sterownik pozostaje nadal aktywny.		

Przyciski klawiatury

	Przycisk GÓRA
	Przycisk DÓŁ
	Przycisk LEWO
	Przycisk PRAWO
EXIT	Przycisk EXIT
	Przycisk ENTER

5. Konfiguracja sterownika

Sterownik ATS-1000 może zostać skonfigurowany do pracy przy pomocy klawiatury i wyświetlacza umieszczonego na panelu czołowym. Struktura menu wyświetlacza została przedstawiona na *Rysunek 5*.

Uwaga!!! W trakcie konfiguracji sterownika wszelkie wprowadzane zmiany przechowywane są w ulotnej pamięci RAM. Wyłączenie zasilania podczas tej operacji prowadzi do utraty zmodyfikowanych ustawień. Zapis nowych parametrów do pamięci nieulotnej FLASH dokonywany jest dopiero w chwili wyjścia do ekranu głównego za pomocą przycisku EXIT.

Status zasilania		
Odstawienie		
Jezyk (Language)		
Parametry pracy		
Ilosc faz		
Typ sieci		
Siec-siec		
Siec-agregat		
Siec-siec-sprzeglo		
Siec-agregsprzeglo		
Tryb pracy		
Automatyczny z samopowrotem		
Automatyczny bez samopowrotu		
Reczny z wyborem zrodla zasilania		
Ustawienia czasow		
T1 – czas po zaniku zasilania		
T2 – czas po powrocie zasilania		
T3 - czas przed zamknieciem Q1 Q2 Q3		
T4 - czas ssania		
T5 — czas chlodzenia agregatu		
T6 – czas proby startu agregatu		
T7 – czas pomiedzy prob startu agregatu		
T9 - czas testu zamkniecia Q1 Q2 Q3		
T10 - czas testu otwarcia Q1 Q2 Q3		
Opcje		
Ilosc prob startu agregatu		
Zrzut obciazenia		
Progi napieciowe		
Praca z svonalem gotowosci agregatu		
Kontrola zamkniecia lacznikow 01 02 03		
Kontrola otwarcia lacznikow O1 O2 O3		
Trwala blokada pozarowa		
Praca z kontrola wyzwolenia lacznikow		
Praca z chlodzeniem agregatu		
Praca z zewnetrznym sygnalem LOCK		
Zamiana sieci		
MODBUS ID		
Zmiana hasla		
Status urzadzenia		

Rysunek 5: Struktura menu wyświetlacza

Odstawienie

Odstawienie wewnętrzne (programowe) służy do zatrzymania pracy sterownika i wprowadzenia go w stan nieaktywny. Możliwa jest konfiguracja parametrów pracy, ale główny algorytm sterowania nie będzie wykonywany. Wyłączenie odstawienia spowoduje rozpoczęcie pracy algorytmu od początku (jak po załączeniu zasilania DC).

Język (Language)

Menu języka służy do zmiany tekstów wyświetlanych na wyświetlaczu urządzenia. Możliwy jest wybór języków polskiego i angielskiego.

Parametry pracy

Uwaga!!! Przed przystąpieniem do modyfikacji ustawień typu sieci, ilość faz lub zamiany sieci zaleca się wprowadzenie sterownika w stan odstawienia wewnętrznego (zatrzymania). Pozwoli to uniknąć kilkukrotnego resetu działania algorytmu po każdorazowej zmianie wybranych ustawień.

Menu Parametry pracy służy do konfiguracji ustawień wykorzystywanych w trakcie realizacji algorytmu sterowania. Wejście w menu możliwe jest wyłącznie po podaniu prawidłowego hasła dostępu, jeżeli takie zostało wcześniej ustawione. Brak ustawionego hasła pomija sprawdzanie tego zabezpieczenia.

llość faz

Menu Ilosc faz umożliwia konfigurację sterownika do monitoringu sieci jedno lub trójfazowej. Dla sieci jednofazowej wartości napięć L2, L3, asymetrii oraz znacznik kierunku faz są ignorowane.

Typ sieci

Menu Typ sieci posiada następujące pola wyboru:

Dokładny opis działania poszczególnych opcji został przedstawiony w rozdziale dotyczącym algorytmu sterowania.

Tryb pracy

Menu Tryb pracy umożliwia konfigurację działania w ramach wybranego Typu sieci.

Automatyczny z samopowrotem	W trybie automatycznym, w przypadku stwierdzenia zaniku zasilania podstawowego PRI, następuje automatyczne przejście na zasilanie rezerwowe SEC po czasie T1. Powrót zasilania podstawowego powoduje ponowne przełączenie na sieć PRI po czasie T2.
Automatyczny bez samopowrotu	W trybie automatycznym, w przypadku stwierdzenia zaniku zasilania podstawowego PRI, następuje automatyczne przejście na zasilanie rezerwowe SEC

	po czasie T1. Sterownik pozostanie na zasilaniu SEC nawet w przypadku powrotu zasilania PRI. Ponowne przełączenie na sieć PRI wymaga resetu sterownika lub chwilową zmianę ustawień na tryb Automatyczny z samopowrotem.
Ręczny z wyborem	W trybie ręcznym automatyka SZR jest wyłączona i operator może ustawić dowolny, dozwolony dla danego typu sieci, stan styków Q1, Q2, Q3 oraz GEN START. Nie ma możliwości ustawienia takiej kombinacji styków, która dla wybranej sieci byłaby nieprawidłowa.
	Uwaga!!! Parametry ręcznej konfiguracji nie są pamiętane w nieulotnej pamięci FLASH. Sterownik pozostanie w trybie ręcznym do momentu resetu lub wyłączenia i ponownego załączenia napięcia zasilającego DC.

Ustawienia czasów

Menu Ustawienia czasow służy do konfiguracji parametrów czasowych wykorzystywanych w algorytmie sterowania.

т1	Czas po zaniku zasilania Czas T1 jest opóźnieniem pomiędzy chwilą zaniku zasilania podstawowego PRI, a momentem przełączenia na zasilanie rezerwowe SEC. Jeżeli w trakcie odmierzania czasu T1 nastąpi powrót zasilania PRI, licznik T1 jest kasowany a operacja przełączania anulowana. Dozwolony zakres: 0,5600,0s
	Wartość domyślna: 5,0s
T2	Czas po powrocie zasilania Czas T2 dotyczy sytuacji, w której sterownik pracuje na zasilaniu rezerwowym SEC. Jest opóźnieniem pomiędzy chwilą powrotu zasilania podstawowego PRI, a momentem przełączenia na sieć PRI. Jeżeli w trakcie odmierzania czasu T2 nastąpi ponowny zanik zasilania PRI, licznik T2 jest kasowany a operacja przełączania anulowana. Dozwolony zakres: 0,5600,0s
	Wartość domyślna: 60,0s
тз	Czas przed zamknięciem Q1, Q2, Q3 Załączanie styków Q1, Q2, Q3 następuje w sekwencji zależnej od wybranego algorytmu sterowania (typu sieci). Zwłoka T3 została wprowadzona pomiędzy zamknięciem poszczególnych wyłączników ze względu na opóźnienia mechaniczne procesu przełączania.
	Dozwolony zakres: 0,560,0s Wartość domyślna: 1,0s
Czas ssania	
	Algorytm sterowania agregatem prądotwórczym kontroluje ssanie agregatu. Styk ssania SUC
14	aktywowany jest w chwili zamknięcia styku GEN STAKT I wyłączany po czasie 14.
	Wartość domyślna: 5,0s
T5	 Czas chłodzenia agregatu Czas T5 jest zwłoką czasową pomiędzy momentem powrotu na zasilanie podstawowe PRI (zdjęcie obciążenia z agregatu), a wyłączeniem styku GEN START. Wychłodzenie agregatu w trakcie pracy bez obciążenia realizowane jest przy aktywnej opcji <i>Praca z chłodzeniem agregatu</i>. Wystąpienie błędu krytycznego sterownika powoduje natychmiastowe otwarcie wszystkich styków sterujących bez opcji chłodzenia.
	Dozwolony zakres: 1,0300,0s Wartość domyślna: 180,0s
T6	Czas próby startu agregatu Podczas próby startu agregatu, po aktywacji styku GEN START, sterownik oczekuje na wykrycie poprawnego napięcia sieci rezerwowej SEC i opcjonalnie na aktywację sygnału gotowości agregatu do przejęcia obciążenia. Jeżeli w czasie T6 nie nastąpi poprawne załączenie agregatu, próba startu zostaje uznana za nieudaną i styki GEN START oraz SUC zostają wyłączone.
	Dozwolony zakres: 1,090,0s Wartość domyślna: 30,0s
	Czas pomiędzy próbami startu agregatu Czas TZ jest zwieka pomiedzy wyłaszeniem ogregatu na nieudanej próbie uruchomienie o
Т7	rozpoczęciem kolejnego rozruchu.
	Dozwolony zakres: 1,090,0s Wartość domyślna: 30,0s

TS	Czas testu zamknięcia Q1, Q2, Q3 W przypadku aktywnej opcji <i>Kontrola zamknięcia łączników Q1, Q2, Q3</i> sterownik rozpoczyna odmierzanie czasu T9 po zamknięciu wyjść przekaźnikowych Q1, Q2 lub Q3. Jeżeli po upływie T9 nie nastąpi aktywacja wejść cyfrowych Q1 ON, Q2 ON lub Q3 ON potwierdzająca zamknięcie danego wyłącznika, zgłoszony zostaje alarm krytyczny zatrzymujący pracę sterownika.	
	Dozwolony zakres: 1,060,0s Wartość domyślna: 5,0s	
T1	Czas testu otwarcia Q1, Q2, Q3 W przypadku aktywnej opcji <i>Kontrola otwarcia łączników Q1, Q2, Q3</i> sterownik rozpoczyna odmierzanie czasu T10 po otwarciu wyjść przekaźnikowych Q1, Q2 lub Q3. Jeżeli po upływie T10 nie nastąpi dezaktywacja wejść cyfrowych Q1 ON, Q2 ON lub Q3 ON potwierdzająca otwarcie danego wyłącznika, zgłoszony zostaje alarm krytyczny zatrzymujący pracę sterownika.	
	Dozwolony zakres: 1,060,0s Wartość domyślna: 5,0s	

Opcje

W menu opcje można dokonać modyfikacji ustawień mających wpływ na działanie algorytmu sterowania i obsługę peryferiów zewnętrznych.

llość prób startu agregatu	Algorytm sterowania agregatem prądotwórczym dokonuje prób uruchomienia agregatu do momentu uzyskania właściwego napięcia wyjściowego oraz, opcjonalnie, potwierdzenia gotowości agregatu do przejęcia obciążenia. Każda nieudana próba może być powtórzona. Zgłoszenie błędu agregatu i zatrzymanie algorytmu rozruchu następuje po liczbie nieudanych prób ustawionych w menu <i>llość prób startu agregatu</i> . Dozwolony zakres: 110 Wartość domyślna: 5
Zrzut obciążenia	Opcja Zrzut obciążenia może zostać aktywowana dla konfiguracji Sieć-sieć oraz Sieć-agregat. W trakcie pracy na zasilaniu podstawowym PRI wszystkie obwody znajdują się pod napięciem. Po zaniku sieci PRI i przed przełączeniem na zasilanie rezerwowe SEC sterownik dokonuje odłączenia części obciążenia, jeżeli aktywna jest opcja Zrzut obciążenia. Dozwolone wartości: Tak/Nie Wartość domyślna: Nie
Progi napięciowe	 Menu Progi napięciowe służy do ustawienia górnego i dolnego progu napięciowego (okna), oddzielnie dla sieci PRI i SEC. Wartości pomiarowe zostaną uznane za prawidłowe, jeżeli wszystkie mierzone napięcia fazowe L-N (w zależności od konfiguracji jedno lub trójfazowej) będą mieściły się pomiędzy ustawionymi progami. W menu Progi napięciowe dokonuje się także ustawienia maksymalnej dopuszczalnej wartości asymetrii sieci trójfazowej ASYM. Dozwolony zakres dolnego progu napięciowego: 40250V Dozwolony zakres górnego progu napięciowego: 50270V Zakres domyślny: 210240V Dozwolony zakres asymetrii: 0100V
Praca z sygnałem gotowości agregatu	Zakres domyślny: 50V Przełączenie na pracę z agregatem następuje po zaniku zasilania podstawowego PRI w sytuacji, gdy na wyjściu agregatu pojawi się poprawne napięcie. Włączenie dodatkowej opcji <i>Praca z sygnałem gotowości agregatu</i> wstrzymuje przełączenie do momentu wykrycia stanu aktywnego na wejściu GEN RDY. Stanowi to dodatkową informację od układu kontroli agregatu, że jest on gotowy do przejęcia obciążenia. Dozwolone wartości: Tak/Nie Wartość domyślna: Nie
Kontrola zamknięcia łączników Q1 Q2 Q3	Sterownik kontroluje zamknięcie wyłączników Q1, Q2 oraz Q3 przy pomocy styków pomocniczych i wejść Q1 ON, Q2 ON oraz Q3 ON. Przy nieaktywnej opcji kontroli, sterownik będzie oczekiwał na potwierdzenie zamknięcia wybranego wyłącznika bez żadnego limitu czasowego, co w sytuacji awaryjnej może doprowadzić do zawieszenia działania algorytmu sterowania. Załączenie opcji kontroli wymusza limit czasowy T9, po upływie którego zostaje zgłoszony alarm krytyczny, jeżeli nie nastąpi zamknięcie styku

	pomocniczego wybranego wyłącznika.
	Dozwolone wartości: Tak/Nie Wartość domyślna: Nie
Kontrola otwarcia łączników Q1 Q2 Q3	Sterownik kontroluje otwarcie wyłączników Q1, Q2 oraz Q3 przy pomocy styków pomocniczych i wejść Q1 ON, Q2 ON oraz Q3 ON. Przy nieaktywnej opcji kontroli, sterownik będzie oczekiwał na potwierdzenie otwarcia wybranego wyłącznika bez żadnego limitu czasowego, co w sytuacji awaryjnej może doprowadzić do zawieszenia działania algorytmu sterowania. Załączenie opcji kontroli wymusza limit czasowy T10, po upływie którego zostaje zgłoszony alarm krytyczny, jeżeli nie nastąpi otwarcie styku pomocniczego wybranego wyłącznika. Dozwolone wartości: Tak/Nie
	Wartość domyślna: Nie
Trwała blokada pożarowa	Sterownik kontroluje wejście FIRE, będące zgłoszeniem zewnętrznego alarmu pożarowego. Przy nieaktywnej opcji trwałej blokady, wystąpienie alarmu pożarowego prowadzi do wyłączenia wszystkich wyjść przekaźnikowych (poza ALARM) i zatrzymanie działania algorytmu sterowania. Ustąpienie alarmu pożarowego powoduje restart algorytmu i rozpoczęcie pracy od nowa. Przy aktywnej opcji trwałej blokady wystąpienia alarmu pożarowego zatrzymuje działanie algorytmu. Do ponownego rozpoczęcia pracy wymagane jest ustąpienie alarmu i ręczne zresetowanie sterownika przez operatora (przytrzymanie przycisku EXIT przez 4s).
	Dozwolone wartości: Tak/Nie Wartość domyślna: Tak
Praca z kontrolą wyzwolenia łączników	Wejścia Q1 TRIG i Q2 TRIG kontrolują stan wyzwolenia wyłączników w celu wykrycia stanu awaryjnego. Stan wysoki tych wejść (styki pomocnicze zamknięte) sygnalizuje poprawną pracę wyłączników. Wystąpienie stanu niskiego na dowolnym z wejść prowadzi do zgłoszenia alarmu krytycznego i zatrzymania pracy algorytmu sterowania. Wyłączenie opcji <i>Pracy z kontrolą wyzwolenia wyłączników</i> powoduje ignorowanie stanu wejść Q1 TRIG oraz Q2 TRIG, co może mieć zastosowanie w przypadku wykorzystania wyłączników bez kontroli wyzwolenia.
	Dozwolone wartości: Tak/Nie Wartość domyślna: Nie
Praca z chłodzeniem agregatu	W konfiguracji Sieć-agregat i Sieć-agregat-sprzęgło, powrót na zasilanie podstawowe PRI powoduje wyłączenie agregatu. Przy aktywnej opcji <i>Pracy z</i> <i>chłodzeniem agregatu</i> pozostanie on załączony przez czas T5 po zdjęciu obciążenia.
	Dozwolone wartości: Tak/Nie Wartość domyślna: Nie
Praca z zewnętrznym sygnałem LOCK	 Sterownik posiada trzy źródła wprowadzające algorytm sterowania w stan zatrzymania: Odstawienie wewnętrzne (programowe), Odstawienie zewnętrznym sygnałem IDLE (stan wysoki wejścia IDLE), Odstawienie zewnętrznym sygnałem LOCK (stan niski wejścia LOCK). W przypadku aktywacji Pracy z zewnętrznym sygnałem LOCK stan wejścia LOCK jest monitorowany i wystąpienie stanu niskiego zatrzymuje algorytm sterowa`nia. W przeciwnym razie stan wejścia LOCK jest ignorowany. Dozwolone wartości: Tak/Nie Wartość domyślna: Nie

Zamiana sieci

W menu _{Zamiana} sieci można dokonać programowej zamiany wejść analogowych PRI oraz SEC. Przy wyłączonej opcji, wartości napięć sieci podstawowej mierzone są na zaciskach PRI, a rezerwowej na zaciskach SEC. Włączenie opcji zamiany rozpoczyna pomiar sieci podstawowej na zaciskach SEC, a rezerwowej na PRI.

MODBUS ID

Każde urządzenie pracujące w sieci MODBUS posiada swój unikalny numer ID. W menu MODBUS ID możliwe jest nadanie sterownikowi ATS-1000 identyfikatora MODBUS.

Dozwolone wartości: 1...247 Wartość domyślna: 1

Zmiana hasła

W celu ochrony parametrów konfiguracyjnych przed dostępem osób nieuprawnionych wprowadzona została ochrona hasłem. W menu zmiana hasla możliwe jest nadania nowego hasła zabezpieczającego pod warunkiem znajomości hasła bieżącego. Hasło składa się maksymalnie z ośmiu znaków ASCII. Akceptacja wprowadzonych zmian dokonywana jest przyciskiem ENTER.

Rysunek 6: Ekran zmiany hasła

Wprowadzenie hasła pustego składającego się z samych spacji anuluje jego sprawdzanie. Wejście w menu *Parametrów pracy* odbywać się będzie z pominięciem pytania o hasło.

Uwaga!!! Zmiana hasła odbywa się w ulotnej pamięci RAM. Zapisanie hasła do nieulotnej pamięci FLASH ma miejsce dopiero w chwili wyjścia do menu głównego przyciskiem EXIT.

6. Obsługa sterownika

Czas aktywności hasła po wprowadzeniu

Wejście w menu *Parametry pracy* i zmiana ustawień sterownika możliwa jest po podaniu poprawnego hasła zabezpieczającego. Zaakceptowane hasło ważne jest przez czas 10 minut i modyfikacja kolejnych parametrów odbywa się bez ponownego wprowadzania. Po upływie 10 minut pytanie o hasło pojawi się ponownie.

Zapis parametrów do pamięci nieulotnej

Zmiana ustawień w sterowniku ATS-1000 modyfikuje parametry pracy w ulotnej pamięci RAM. Oznacza to, że wyłączenie zasilania w trakcie tej operacji prowadzi do utraty wprowadzonych informacji. Skopiowanie zawartości pamięci RAM do nieulotnej pamięci FLASH dokonywane jest dopiero podczas wyjścia do menu głównego. Mechanizm ten ma na celu ograniczenie liczby kasowań i zapisów pamięci nieulotnej.

Reset sterownika

Wystąpienie alarmu krytycznego sygnalizowanego trwałym zapaleniem diody ALARM prowadzi do zatrzymania algorytmu działania. Praca algorytmu może zostać także wstrzymana w sytuacji oczekiwania na zamknięcie lub otwarcie wyłączników Q1, Q2 oraz Q3.

Wyłączenie i ponowne załączenie zasilania DC prowadzi do pełnego resetu sterownika. Możliwy jest również programowy reset algorytmu sterowania, aktywowany przytrzymaniem przycisku EXIT przez czas 4s. Wykonanie resetu programowego i rozpoczęcie działania algorytmu od początku możliwe jest w dowolnym momencie, niezależnie od bieżącego stanu sterownika.

Reset algorytmu sterowania występuje również po wyjściu ze stanu odstawienia zewnętrznego lub wewnętrznego (wejścia IDLE, LOCK).

Zgłoszenie alarmu pożarowego na wejściu FIRE

W trakcie normalnej pracy, przy braku alarmu pożarowego, wejście FIRE przyjmuje stan wysoki. Tylko w takiej sytuacji możliwe jest załączenie wyjść przekaźnikowych. Wykrycie stanu niskiego na wejściu pożarowym FIRE wprowadza sterownik w stan alarmu krytycznego i wszystkie wyjścia przekaźnikowe (poza ALARM) stają się nieaktywne. Następuje elektryczne odłączenie napięcia zasilania od cewek przekaźników i otwarcie wyjść nawet w przypadku uszkodzenia procesora i całkowitej blokady programu.

7. Podgląd parametrów pracy

Sterownik ATS-1000 umożliwia podgląd parametrów pracy na trzech różnych ekranach wyświetlacza tekstowego.

Ekran główny

Ekran główny (*Rysunek 7*) wyświetlany jest po załączeniu zasilania sterownika bez potrzeby uruchamiania dodatkowych opcji. Na ekranie widoczne są napięcia fazowe L1, L2, L3 sieci podstawowej PRI oraz rezerwowej SEC wraz z asymetrią. W przypadku konfiguracji dla sieci jednofazowej wartości L2, L3, ASYM nie są wyświetlane. Wartości wyskalowane są w woltach wartości skutecznej napięcia mierzonego.

Sied	: L1	L2	L3	ASYM
PRI	231	232	231	2V
SEC	232	233	231	2V

Rysunek 7: Ekran główny

Status zasilania

Status zasilania (*Rysunek 8*) przedstawia podobne dane do ekranu głównego, a także dodatkowo kierunek wirowania faz, który ze względu na ograniczoną liczbę znaków wyświetlacza został tam pominięty. Aby aktywować ekran statusu zasilania należy nacisnąć przycisk ENTER i wybrać z menu >Status zasilania. W przypadku konfiguracji dla sieci jednofazowej wyświetlane są wszystkie wartości mierzone, pomimo iż nie są one wykorzystywane do pracy sterownika. W przypadku braku pełnego zasilania trójfazowego wartość kierunku D przyjmuje wartości losowe.

Znaczenie pola D

- R kierunek zgodny (Right)
- L kierunek niezgodny (Left)

		- 	- 		
P	231	232	233		R
S	232	233	231	2V	L

Rysunek 8: Status zasilania

Status urządzenia

Sterownik ATS-1000 posiada specjalny 32-bitowy rejestr statusu urządzenia przechowujący informację o bieżących błędach wykrytych w trakcie działania algorytmu. Opcja aktywacji ekranu >Status urzadzenia znajduje się w dolnej części menu wywoływanego klawiszem ENTER z poziomu ekranu głównego.

Wartość 32-bitowego rejestru statusu wyświetlana jest w formie hexadecymalnej. Znaczenie poszczególnych bitów rejestru przedstawiono w *Tabela 2*. Ustawienie danego bitu jest równoznaczne z wystąpieniem alarmu lub aktywacją przypisanej opcji.

Rejestr statusu urządzenia					
Bit	Znaczenie	Alarm krytyczny			
2231	Nie używane				
21	Urządzenie zablokowane zewnętrznym sygnałem LOCK				
20	Urządzenie zablokowane wewnętrznym trybem IDLE				
19	Urządzenie zablokowane zewnętrznym sygnałem IDLE				
18	Generator utracił napięcie lub gotowość do przejęcia obciążenia w trakcie pracy				
17	Nieudana próba uruchomienia generatora				
16	Wykryto nieprawidłowe stany styków kontrolnych Q1, Q2, Q3	\checkmark			
15	Wykryto stan aktywny na wejściu pożarowym FIRE	\checkmark			
14	Układ wszedł w ALARM Mode	\checkmark			
13	Ustawiana tylko w historii przy załączeniu zasilania (POWER_UP)				
12	Brak otwarcia Q3	\checkmark			
11	Brak zamknięcia Q3	✓			
10	Wykryto jednoczesne załączenie Q1_PRI oraz Q2_SEC	✓			
9	Sygnał Q2_TRIP stał się nieaktywny (wyzwolenie Q2)	\checkmark			
8	Sygnał Q1_TRIP stał się nieaktywny (wyzwolenie Q1)	\checkmark			
7	Brak otwarcia Q2	\checkmark			
6	Brak zamknięcia Q2	✓			
5	Brak otwarcia Q1	✓			
4	Brak zamknięcia Q1	✓			
3	Rotacja SEC niezgodna				
2	Błąd zasilania SEC				
1	Błąd zasilania PRI				
0	Rotacja PRI niezgodna				

Rozpoznanie poszczególnych bitów rejestru statusu w formie hexadecymalnej jest kłopotliwe. Z tego względu wprowadzono podgląd bitów wraz z ich opisem, aktywowany przyciskiem GÓRA z poziomu ekranu rejestru statusu. Przykładowy podgląd bitu 0 przedstawiono na *Rysunek 10*.

Rysunek 10: Podgląd bitu 0 rejestru statusu

Przy pomocy strzałek GÓRA, DÓŁ możliwy jest przegląd bitów rejestru statusu.

8. Zasady pomiaru napięć i asymetrii

Sterownik ATS-1000 posiada 8 analogowych torów pomiarowych, po cztery dla sieci podstawowej PRI oraz rezerwowej SEC. Są to:

- wejście L1,
- wejście L2,
- wejście L3,
- asymetria faz.

Napięcia L1, L2 i L3 mierzone są względem przewodu neutralnego N. Wartości wskazywane na wyświetlaczu wyskalowane są w woltach wartości skutecznej napięcia L-N.

Wartość asymetrii jest pomiarem napięcia będącego sumą wektorów poszczególnych faz zasilających, tak jak pokazano na *Rysunek 11*.

Instrukcja użytkownika sterownika ATS-1000

Rysunek 11: Pomiar napięć fazowych i asymetrii

W sytuacji całkowitego zaniku dwóch faz, wartość napięcia asymetrii jest równa ¹/₃ napięcia występującego w sprawnej fazie. Przykład z zanikiem L2 i L3 przedstawiono na *Rysunek 12*.

Rysunek 12: Pomiar asymetrii w przypadku zaniku L2 i L3

9. Konfiguracja sieć-sieć – podstawowy schemat połączeń

10. Konfiguracja sieć-agregat – podstawowy schemat połączeń

11. Algorytm sterowania agregatem

W konfiguracjach *sieć-agregat* oraz *sieć-agregat-sprzęgło* zanik zasilania podstawowego PRI powoduje rozruch agregatu prądotwórczego. Podstawowe parametry konfiguracyjne agregatu to:

- czas próby startu agregatu T6,
- czas pomiędzy próbami startu agregatu T7,
- czas uruchomienia ssania T4,
- ilość prób startu agregatu,
- praca z sygnałem gotowości agregatu do przejęcia obciążenia GEN RDY.

Na *Rysunek 15* przedstawiono cztery nieudane próby uruchomienia generatora. Brak napięcia wyjściowego U występujący podczas każdej z prób zakończył działanie algorytmu pulsowaniem diody ALARM. Nie nastąpiło przełączenie na sieć rezerwową. Możliwa jest ponowna praca na sieci podstawowej PRI, ale sterownik nie dokona próby uruchomienia generatora po kolejnym zaniku PRI. Wymagany jest reset sterownika przyciskiem EXIT (przytrzymanym przez czas 4s) lub wyłaczenie i ponowne załączenie napięcia zasilającego DC. Reset algorytmu sterowania występuje ponadto po wyjściu ze stanu odstawienia wewnętrznego lub zewnętrznego.

Rysunek 15: Czterokrotna próba uruchomienia generatora

Na *Rysunek 16* przedstawiono załączenie generatora w trzeciej próbie przy nieaktywnej opcji kontroli gotowości agregatu do przejęcia obciążenia GEN RDY. Pojawienie się napięcia wyjściowego U jest potwierdzeniem uruchomienia i momentem przejścia na pracę z generatorem.

Rysunek 16: Praca bez sygnału gotowości agregatu do przejęcia obciążenia

Na *Rysunek 17* przedstawiono załączenie generatora w trzeciej próbie z aktywną opcją kontroli gotowości agregatu do przejęcia obciążenia GEN RDY. Przejście na pracę z generatorem (SEC) nastąpiło po wykryciu poprawnego napięcia wyjściowego U oraz aktywowaniu wejścia cyfrowego GEN RDY.

12. Parametry techniczne

Obwód pomiarowy		
Sposób pomiaru napięć		fazowy L-N
Obsługiwane sieci PRI oraz SEC		jedno lub trójfazowe (z przewodem N)
Zakres mierzonego napięcia fazowego L-N	VAC	0280
Zakres częstotliwości mierzonych napięć	Hz	4763
Pomiar asymetrii oraz kierunku wirowania faz		tak (sieci trójfazowe)
Dokładność pomiaru napięć	%	2 (wartości zakresu)
Impedancja wejściowa zacisków L1, L2, L3, N	MΩ	10 (dla każdego wejścia)
Wejścia cyfrowe		-
Zakres napięć dla stanu nieaktywnego 0	V	02
Zakres napięć dla stanu aktywnego 1	V	830
Prąd wejściowy dla zasilania 24VDC	mA	1,9mA
Opóźnienie detekcji zmiany stanu	ms	80
Odporność na udary wysokiej energii surge	V	500
Izolacja galwaniczna od układu sterowania		nie
Wyjścia przekaźnikowe		
Rodzaj zestyków wyjść Q1, Q2, Q3, ALARM		1P – przełączne
Rodzaj zestyków wyjść START GEN, SSANIE		1Z – zwierne
Znamionowe napiecie styków	V	250
Znamionowy prad łączeniowy I _n w kategorii		
AC1	A/V AC	6/250
DC1	A/V DC	6/24
Maksymalna moc łączeniowa w kategorii AC1	VA	1500
Rezystancja zestyków	mΩ	≤ 100
Izolacja galwaniczna od układu sterowania		tak
Trwałość łączeniowa przekaźników w kategorii		. 4 5 405
AC1 przy obciążeniu 50% In	сукіе	$\geq 1.5 \times 10^{3}$
Trwałość mechaniczna	cykle	\geq 1 x 10 ⁷
Układ zasilania		-
Zakres napięć zasilających	V DC	10,830
Pobór mocy	W	≤ 5
Izolacja galwaniczna od układu sterowania		nie
Odporność na udary	V	500 1,2/50µs
Komunikacja MODBUS		
Predkość transmisii	bps	9600
Obsługiwane ramki		Odczyt wejść analogowych, cyfrowych, wyjść j
5		statusu urządzenia
Izolacja galwaniczna od układu sterowania		nie
Zakres adresu urządzenia		1247
Dane izolacji		
Znamionowe napięcie izolacji	V AC	400
Znamionowe napięcie udarowe wejść		
pomiarowych oraz wyjść przekaźnikowych	V	4 000 1,2/50μs
Kategoria przepięciowa		
Stopień zanieczyszczenia izolacji		2
Napięcie probiercze		
 układ sterowania – wejście pomiarowe 		4 000 (izolacja wzmocniona)
układ sterowania – wyjście przekaźnikowe	V AC	4 000 (izolacja wzmocniona)
przerwa zestykowa		1 000
wyjścia Q1, Q2, Q3 - GEN_START, SUC, ALM		4 000 (izolacja wzmocniona)

Informacje ogólne		
Wymiary (a x b x h) / masa	mm / g	228,5 x 125 x 74 / 680
Temperatura składowania / pracy	°C	-40+70 / -20+55
Stopień ochrony obudowy		IP20
Maksymalna wilgotność względna	%	85
Odporność na udary	g	15
Odporność na wibracje	mm	0,35 1055Hz
Klasa palności		Płytka i obudowa: UL-94-V0
Przekrój przewodów połączeniowych	mm²	0,22,5 (2812AWG)
Moment dokręcania złącz śrubowych	Nm	0,4
Zgodność z normami		PN-EN 60947-1, PN-EN 60947-6-1
Wysokość instalacji nad poziom morza	m	≤ 2000
Odporność na wyładowania elektrostatyczne		
Powietrzne	kV	8
Kontaktowe		4
Odporność na zakłócenia typu Burst		
Wejście zasilania DC	k)/	2
Wejścia cyfrowe	κv	1
Wejścia analogowe		4
Odporność na pola elektromagnetyczne o		
częstotliwości radiowej		
Poziom	V/m	10
Zakres	MHz	801000
Emisja przewodowa 150kHz30MHz		Klasa B
Emisja promieniowana 30MHz1GHz		Klasa B
Odporność na zakłócenia przewodzone		
indukowane o częstotliwościach radiowych		
Poziom	V	10
Zakres	MHz	0,1580
Odporność na pole magnetyczne o częstotliwości sieciowej	A/m	30

Załącznik A Protokół MODBUS

A.1. Parametry transmisji RS-485

Ustawienia transmisji szeregowej interfejsu RS-485:

Parametr	Wartość		
Prędkość	9600 bps		
Parzystość	Brak		
llość bitów danych	8		
llość bitów stopu	1		

Wartości powyższe są ustawione na stałe i nie przewidziano możliwości ich rekonfiguracji.

Interfejs RS-485 wymaga dopasowania impedancji linii przewodowej dla urządzeń znajdujących się na końcach wspólnej magistrali. Uzyskanie dopasowania dokonuje się poprzez podłączenie zacisku TR do linii A, tak jak to pokazano na *Rysunek 18*.

Rysunek 18: Zasady terminacji linii RS-485

A.2. Format ramki danych MODBUS

Sterownik ATS-1000 jest urządzeniem pracującym jako *Slave*, który odbiera dane od urządzenia nadrzędnego *Master*. Ze względów bezpieczeństwa w sterowniku zaimplementowano wyłącznie ramki odczytu danych. Protokół MODBUS nie daje możliwości zapisu do sterownika i tym samym zdalnej modyfikacji parametrów.

Ogólny format ramki odbieranej od *Master'a* przedstawiono na *Rysunek 19*.

Start Ptr	MODBUS ID	Function	addrH	addrL	lenH	lenL	crcH	crcL	End Ptr
4ms	1 bajt	1 bajt	1 bajt	1 bajt	1 bajt	1 bajt	1 bajt	1 bajt	4 ms

Rysunek 19: Format ramki MODBUS odbieranej przez sterownik ATS-1000

- Start Ptr, End Ptr zwłoka czasowa, podczas której odbiornik MODBUS nie odbiera żadnych transmitowanych danych. Wykrycie ciszy na linii trwającej około 4ms powoduje zakończenie odbioru danych i rozpoczęcie analizy ramki. Oznacza to, że w trakcie transmisji odstęp pomiędzy sąsiednimi bajtami nie powinien być dłuższy niż około 4ms. W celu eliminacji ewentualnych błędów transmisji zaleca się maksymalne skrócenie tego czasu.
- MODBUS ID konfigurowany w sterowniku adres urządzenia 1...247. Ramka MODBUS zostanie odebrana wtedy, gdy pole MODBUS ID będzie zgodne z tym ustawionym w konfiguracji sterownika.
- 3. **Function** kod funkcji określający typ danych, które zostaną odesłane w odpowiedzi. Dopuszczalne wartości tego pola zostaną omówione w dalszych rozdziałach.
- 4. addrH, addrL starszy i młodszy bajt adresu początkowego odczytywanego rejestru.
- 5. lenH, lenL starszy i młodszy bajt słowa ilości odczytywanych danych.
- 6. crcH, crcL starszy i młodszy bajt słowa zabezpieczającego CRC.

W odpowiedzi sterownik ATS-1000 zwraca ramkę z danymi w formacie przedstawionym na *Rysunek 20*.

				Data			
MODBUS ID	Function	Length	data0		dataN	crcH	crcL
1 bajt	1 bajt	1 bajt	1 bajt		1 bajt	1 bajt	1 bajt

Rysunek 20: Format ramki MODBUS zwracanej przez sterownik ATS-1000

- 1. **MODBUS ID** konfigurowany w sterowniku adres urządzenia 1...247.
- 2. **Function** kod funkcji skopiowany z ramki odebranej. Wyjątki stanowią odpowiedzi w przypadku wystąpienia błędów.
- 3. Length ilość bajtów przesyłanych w polu Data.
- 4. **Data** Pole danych składające się z N bajtów.
- 5. crcH, crcL starszy i młodszy bajt słowa zabezpieczającego CRC.

A.3. Obsługiwane ramki danych MODBUS

Sterownik ATS-1000 posiada zaimplementowane następujące ramki MODBUS.

- 1. Odczyt stanów przekaźników (RELAY OUTPUTS).
- 2. Odczyt stanów wejść cyfrowych (DIGITAL INPUTS).
- 3. Odczyt rejestru statusu urządzenia (SYS STATE).
- 4. Odczyt wartości wejść analogowych (ANALOG INPUTS), asymetrii oraz kierunku faz.

Funkcja ATS-1000	Funkcja MODBUS	Kod funkcji	Adres	Długość
Odczyt	Road Colls	0v01	0x1000	6
RELAY OUTPUTS	Reau Colls	0X01	(4096)	0
Odczyt	Road Discrota Inputs	0,02	0x2000	0
DIGITAL INPUTS	Read Discrete inputs	0x02	(8192)	9
Odczyt	Pad Holding Pagistor	0,02	0x3000	2
SYS STATE	Rad Holding Register	0x05	(12288)	2
Odczyt	Dood Input Degister	0.04	0x40000x4008	1 0
ANALOG INPUTS	Read input Register	0x04	(1638416392)	19

Odczyt stanu przekaźników (RELAY OUTPUTS)

Sterownik ATS-1000 zawiera 6 wyjść przekaźnikowych umieszczonych pod adresem 0x1000. Format ramki wysyłanej przez jednostkę nadrzędną *Master* przedstawiono na *Rysunek 21*. Należy zwrócić uwagę, że w żądaniu wartość **lenL** wynosi 6, czyli odczyt dotyczy 6 bitów reprezentujących stany przekaźników.

Get Relay Outputs Request

Start Ptr	MODBUS ID	Function	addrH	addrL	lenH	lenL	crcH	crcL	End Ptr
4ms	1 bajt	0x01	0x10	0x00	0x00	0x06	1 bajt	1 bajt	4 ms

Rysunek 21: Format ramki żądania odczytu wyjść przekaźnikowych

W odpowiedzi sterownik ATS-1000 odsyła ramkę danych zawierającą jeden bajt danych, którego 6 najmłodszych bitów reprezentuje stany wyjść przekaźnikowych.

Get Relay Outputs Response

			Data			
MODBUS ID	Function	Length	data0	crcH	crcL	End Ptr
1 bajt	0x01	0x01	Relays	1 bajt	1 bajt	4 ms

Rysunek 22: Format ramki odpowiedzi odczytu wyjść przekaźnikowych

Bajt Relays zawiera ciąg bitów reprezentujących stany wyjściowe przekaźników.

Bit	Oznaczenie wyjścia	Opis
7	Nie używane, zawsze 0	
6	Nie używane, zawsze 0	
5	ALARM	Zgłoszenie alarmu.
4	Q_GEN_SUCTION	Ssanie agregatu.
3	Q_GEN_START	Start agregatu.
2	Q3_DROP	Zrzut obciążenia/sprzęgło.
1	Q2_SECONDARY	Przekaźnik załączenia sieci rezerwowej SEC.
0	Q1_PRIMARY	Przekaźnik załączenia sieci podstawowej PRI.

Wyjścia przekaźnikowe można odczytywać wyłącznie w formacie przedstawionym powyżej. Odczyt danych spod innego adresu lub w innej ilości powoduje wygenerowanie ramek błędu. W przypadku błędnego adresu początkowego ramka odpowiedzi wygląda następująco.

MODBUS ID	Function	Error	crcH	crcL	End Ptr
1 bajt	0x81	0x02	1 bajt	1 bajt	4 ms

Rysunek 23: Format ramki odpowiedzi odczytu wyjść przekaźnikowych w przypadku błędnego adresu

Pole **Function** wynosi 0x81, które zostało wyliczone przez dodanie wartości 0x80 do pola **Function** 0x01 wysłanego w żądaniu. **Error** 0x02 oznacza błędny adres początkowy danych.

W przypadku żądania błędnej ilości danych zwrócona zostanie następująca ramka:

MODBUS ID	Function	Error	crcH	crcL	End Ptr
1 bajt	0x81	0x03	1 bajt	1 bajt	4 ms

Rysunek 24: Format ramki odpowiedzi odczytu wyjść przekaźnikowych w przypadku błędnej ilości danych

Pole **Function** zostało wyliczone analogicznie do przypadku podania błędnego adresu początkowego. **Error** 0x03 oznacza błędną ilość żądanych danych.

Odczyt stanu wejść cyfrowych (DIGITAL INPUTS)

Sterownik ATS-1000 zawiera 9 wejść cyfrowych umieszczonych pod adresem 0x2000. Format ramki wysyłanej przez jednostkę nadrzędną *Master* przedstawiono na *Rysunek 25*. Pole **lenL** wynosi 9, czyli odczyt dotyczy 9 bitów reprezentujących stany wejść cyfrowych.

Get Digital Inputs Request

Start Ptr	MODBUS ID	Function	addrH	addrL	lenH	lenL	crcH	crcL	End Ptr
4ms	1 bajt	0x02	0x20	0x00	0x00	0x09	1 bajt	1 bajt	4 ms

Rysunek 25: Format ramki żądania odczytu wejść cyfrowych

W odpowiedzi sterownik ATS-1000 odsyła ramkę danych zawierającą jedno słowo (dwa bajty danych), którego 9 najmłodszych bitów reprezentuje stany wejść cyfrowych.

Get Digital Inputs Response

			Da	ata			
MODBUS ID	Function	Length	reg0_L	reg0_H	crcH	crcL	End Ptr
1 bajt	0x02	0x02	DInputsL	DInputsH	1 bajt	1 bajt	4 ms

Rysunek 26: Format ramki odpowiedzi odczytu wejść cyfrowych

Słowo *Dlnputs* zawiera ciąg bitów reprezentujących stany wejść cyfrowych. Wartość "1" zwracana jest w przypadku obecności napięcia na wybranym wejściu.

	DInputsH							
Bit	Oznaczenie wyjścia	Opis						
71	Nie używane, zawsze 0							
0	FIRE	Wejścia FIRE. Stan "1" przy braku alarmu						
		pożarowego.						

	[DInputsL
Bit	Oznaczenie wyjścia	Opis
7	REMOTE_LOCK	Blokada zewnętrzna. Stan aktywny "0".
6	REMOTE_DISCONT	Odstawienie zewnętrzne. Stan aktywny "1".
5	GEN_READY	Generator gotowy do przejęcia obciążenia. Stan aktywny "1".
4	Q2_TRIP	Blokada przeciążeniowa Q2 (kontrola wyzwolenia). Stan awaryjny "0".
3	Q1_TRIP	Blokada przeciążeniowa Q1 (kontrola wyzwolenia). Stan awaryjny "0".
2	Q3_ON	Styk pomocniczy Q3 (kontrola zamknięcia).
1	Q2_ON	Styk pomocniczy Q2 (kontrola zamknięcia).
0	Q1_ON	Styk pomocniczy Q1 (kontrola zamknięcia).

Wejścia cyfrowe można odczytywać wyłącznie w formacie przedstawionym powyżej. Odczyt danych spod innego adresu lub w innej ilości powoduje wygenerowanie ramek błędu. W przypadku błędnego adresu początkowego ramka odpowiedzi wygląda następująco.

MODBUS ID	Function	Error	crcH	crcL	End Ptr
1 bajt	0x82	0x02	1 bajt	1 bajt	4 ms

Rysunek 27: Format ramki odpowiedzi odczytu wejść cyfrowych w przypadku błędnego adresu

W przypadku żądania błędnej ilości danych zwrócona zostanie następująca ramka:

MODBUS ID	Function	Error	crcH	crcL	End Ptr
1 bajt	0x82	0x03	1 bajt	1 bajt	4 ms

Rysunek 28: Format ramki odpowiedzi odczytu wejść cyfrowych w przypadku błędnej ilości danych

Wartości pól **Function** oraz **Error** są analogiczne do tych opisanych w przypadku odczytu wyjść przekaźnikowych.

Pobranie rejestru stanu sterownika (SYS STATE)

Ramka **Get Sys State Request** służy do pobrania 32 bitowego wewnętrznego rejestru zawierającego bieżący stan sterownika ATS-1000.

Get Sys State Request

Start Ptr	MODBUS ID	Function	addrH	addrL	lenH	lenL	crcH	crcL	End Ptr
4ms	1 bajt	0x03	0x30	0x00	0x00	0x02	1 bajt	1 bajt	4 ms

Rysunek 29: Format ramki żądania odczytu rejestru statusowego sterownika

W odpowiedzi sterownik zwraca 2 słowa (2 x 16 bitów) reprezentujące bieżący stan pracy.

Get Sys State Response

				Data					
MODBUS ID	Function	Length	Reg1_H	Reg1_L	Reg0_H	Reg0_L	crcL	crcL	End Ptr
1 bajt	0x03	0x04	Byte3	Byte2	Byte1	Byte0	1 bajt	1 bajt	4 ms

Rysunek 30: Format ramki odpowiedzi odczytu rejestru statusowego sterownika

Znaczenie bajtów pola **Data**:

	Byte3						
Bit	Znaczenie bitu						
70	Nie używane, zawsze 0.						

	Byte2
Bit	Znaczenie bitu
76	Nie używane, zawsze 0.
5	Test zewnętrznego sygnału LOCK.
	0 – praca normalna
	1 – urządzenie zablokowane zewnętrznym sygnałem LOCK
4	Test wewnętrznego sygnału IDLE.
	0 – praca normalna
	1 – urządzenie zablokowane wewnętrznym (programowym) sygnałem IDLE
3	Test zewnętrznego sygnału IDLE.
	0 – praca normalna
	1 – urządzenie zablokowane zewnętrznym sygnałem IDLE
2	Test generatora w trakcie pracy.
	0 – ОК.
	1 – generator utracił napięcie w trakcie normalnej pracy
1	Test uruchomienia generatora – 0 OK, 1 nieudana próba uruchomienia generatora
0	Test łączników Q1, Q2, Q3.
	0 – ОК.
	1 – wykryto nieprawidłową kombinację stanów Q1_ON, Q2_ON, Q3_ON.

Byte1						
Bit	Znaczenie bitu					
7	Test wejścia FIRE – 0 OK, 1 zgłoszony alarm pożarowy.					
6	Alarm Mode – 0 OK, 1 układ w ALARM MODE.					
5	Nie używany, zawsze 0.					
4	Test otwarcia Q3 – 0 OK, 1 błąd otwarcia Q3.					
3	Test zamknięcia Q3 – 0 OK, 1 błąd zamknięcia Q3.					
2	Test załączenia Q1, Q2 – 0 OK, 1 wykryto jednoczesne załączenie Q1 i Q2 (błąd).					
1	Test sygnału Q2_TRIP – 0 OK, 1 nieaktywny Q2_TRIP, przeciążenie.					
0	Test sygnału Q1_TRIP – 0 OK, 1 nieaktywny Q1_TRIP, przeciążenie.					

Byte0					
Bit	Znaczenie bitu				
7	Test otwarcia Q2 – 0 OK, 1 błąd otwarcia Q2.				
6	Test zamknięcia Q2 – 0 OK, 1 błąd zamknięcia Q2.				

5	Test otwarcia Q1 – 0 OK, 1 błąd otwarcia Q1.
4	Test zamknięcia Q1 – 0 OK, 1 błąd zamknięcia Q1.
3	Rotacja SEC – 0 zgodna, 1 niezgodna (błąd).
2	Zasilanie SEC – 0 OK, 1 błąd zasilania SEC.
1	Zasilanie PRI – 0 OK, 1 błąd zasilania PRI.
0	Rotacja PRI – O zgodna, 1 niezgodna (błąd).

W przypadku wysłania ramki z błędnym adresem lub długością, pola **Function** i **Error** są analogiczne do tych opisanych w przypadku odczytu wyjść przekaźnikowych lub wejść cyfrowych.

Pobranie wejść analogowych sterownika (ANALOG INPUTS)

Ramka **Get Analog Inputs Request** służy do pobrania wartości wejść analogowych zmierzonych w sterowniku dla sieci PRI i SEC, wartości asymetrii oraz znaczników kierunku faz. Niezależnie od trybu pracy sterownika (sieć jedno lub trójfazowa) zwracane są wszystkie zmierzone wartości analogowe, nawet jeżeli dla danego trybu pracy nie są wykorzystywane. Wartości zwracane odpowiadają napięciu wyskalowanemu w woltach, są identyczne z tymi wskazywanymi na wyświetlaczu urządzenia.

Ramka **Get Sys State Request** służy do pobrania wybranej ilości słów 16 bitowych reprezentujących zmierzone wartości analogowe oraz asymetrię i kierunek faz.

Get Analog Inputs Request

Start Ptr	MODBUS ID	Function	addrH	addrL	lenH	lenL	crcH	crcL	End Ptr
4ms	1 bajt	0x04	0x40	addrL	0x00	lenL	1 bajt	1 bajt	4 ms

Rysunek 31: Format ramki żądania odczytu wejść analogowych

addrL - wartość pierwszego odczytywanego rejestru wartości analogowych. **lenL** - ilość żądanych rejestrów analogowych.

Kombinacja **addrL** oraz **lenL** nie może wskazywać na rejestr spoza zakresu. W takim przypadku sterownik zwróci kod błędu.

Mapowanie adresów addrL na wartości analogowe przedstawiono w tabeli poniżej.

Adres addrH addrL	Znaczenie
0x40 0x00	Napięcie L1 PRI
0x40 0x01	Napięcie L2 PRI
0x40 0x02	Napięcie L3 PRI
0x40 0x03	Napięcie asymetrii PRI
0x40 0x04	Napięcie L1 SEC
0x40 0x05	Napięcie L2 SEC
0x40 0x06	Napięcie L3 SEC
0x40 0x07	Napięcie asymetrii SEC
0x40 0x08	Rotacja PRI oraz SEC

Przykładowe wartości addrL i lenL.

addrH addrL	lenL	Operacja
0x40 0x00	0x04	Odczyt wartości napięć fazowych L1, L2, L3 oraz asymetrii sieci PRI.
0x40 0x04	0x04	Odczyt wartości napięć fazowych L1, L2, L3 oraz asymetrii sieci SEC.
0x40 0x00	0x01	Odczyt wartości napięcia fazy L1 PRI.
0x40 0x08	0x01	Odczyt kierunku faz obu sieci PRI oraz SEC.
0x40 0x08	0x02	Błędny odczyt. Zażądano odczytu 2 rejestrów spod adresów 0x4008 i
		0x4009. Adres 0x4009 nie istnieje.

W odpowiedzi sterownik zwraca żądaną liczbę rejestrów 16 bitowych.

					Data					
MODBUS ID	Function	Length	Reg0_H	Reg0_L		RegN_H	RegN_L	crcL	crcL	End Ptr
1 bajt	0x04	Length	adc0_H	adc0_L		adcN_H	adcN_L	1 bajt	1 bajt	4 ms

Rysunek 32: Format ramki odpowiedzi odczytu wejść analogowych

adc0_H, **adc0_L** - starszy i młodszy bajt pierwszej żądanej wartości analogowej. **adcN_H**, **adcN_L** - starszy i młodszy bajt ostatniej żądanej wartości analogowej. Wszystkie wartości analogowe są wyskalowane w woltach. Wyjątkiem jest rejestr kierunku faz umieszczony pod adresem 0x0008, w którym znaczenie bitów jest następujące:

16 bitowy rejestr umieszczony pod adresem 0x0008							
Bit Reg_H	H Znaczenie bitu						
71	Nie używane, zawsze 0.						
0	Rotacja PRI - 1 zgodna, 0 niezgodna.						
Bit Reg_L	Znaczenie bitu						
71	Nie używane, zawsze 0.						
0	Rotacja SEC - 1 zgodna, 0 niezgodna.						

W przypadku wysłania ramki z błędnym adresem lub długością, pola **Function** i **Error** są analogiczne do tych opisanych w przypadku odczytu wyjść przekaźnikowych lub wejść cyfrowych.

Aniro Sp. z o.o. 87-100 Toruń ul. B. Chrobrego 64 ☎ +48 56 657 63 63 ⊠ aniro@aniro.pl

www.aniro.pl