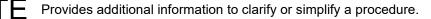
-COMSYS-

Hardware Manual ADF P25


comsys.se/ADF

Safety notes

Read these instructions carefully and look at the equipment to become familiar with the product before trying to install, operate or maintain it. The following special messages may appear throughout this manual to warn of potential hazards or to call attention to that which clarifies or simplifies a procedure:

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or loss of life, property damage, or economic loss.

ATTENTION: Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install, adjust, operate, or service this equipment. Read and understand this manual and other applicable manuals in their entirety before proceeding. Failure to observe this precaution could result in severe bodily injury or loss of life.

ATTENTION: The product contains DC bus capacitors which retain hazardous voltages in excess of 1000 V after input power has been disconnected. After disconnecting input power, wait at least sixty (60) minutes for the DC bus capacitors to discharge and then check the voltage with a voltmeter to ensure the DC bus capacitors are discharged before touching any internal components. Failure to observe this precaution could result in severe bodily injury or loss of life.

ATTENTION: This product may have been modified from factory in order for the auxiliary power to be supplied externally. After disconnecting main fuses, the external auxiliary power must also be disconnected.

ATTENTION: Before manipulating current transformers, make sure that the secondary is short-circuited. Never open the secondary of a loaded current transformer. You must always wear isolating gloves and eye-protection when working on electrical installations. Also make sure that all local safety regulations are fulfilled.

ATTENTION: Only qualified personnel or other trained personnel who understand the potential hazards involved may make service, updates, troubleshooting, repair or similar work to the product. Any such activities not made corrects may result in uncontrolled operation. Failure to observe this precaution could result in damage to equipment and bodily injury. Although reasonable care has been taken to provide accurate and authoritative information in this document, no responsibility is assumed by **Comsys** for any consequences arising out of the use of this material.

The information in this document is subject to change without notice.

© 2008 – 2020 Comsys AB. All rights reserved.

Product identification

The product identification label is found at the front of the ADF. Remember to check that your supply is compatible with the technical data stated on the label before installing and commissioning the Active Filter.

Active Filter ADF P25	
Technical data:Line voltage:20Frequency:20Current capacity:20Protection class:20Cooling medium:20Ambient temperature:20	08 - 480 V 50/60 Hz 30 A IP20 Air 0 - 40°C
Product identification: Model: ADF P25-30/480 Art. No.: Serial number:	_T-E20 101 871
CE	

Comsys AB www.comsys.se Made in Sweden

This manual applies to products listed in the table below:

Table 1: Applicable ADF P25 models

Product line	Models	Current rating	Voltage
ADF P25 Air cooled, 3 wire	ADF P25-30/480	30 A _{RMS}	208 – 480 V

Standards

These products are CE compliant, which means that the products are in conformity with the European Community low voltage directives 2014/35/EU and 93/68/EEC and it bears the CE label.

The following standards apply:

Table 2: Standards

Standards	
Electromagnetic compatibility	EN 61000-6-2, EN 61000-6-4
Electrical design and safety	EN 50178 / VDE0160
Protection class	IP20 according to IEC 60529 IP21 according to IEC 60529 (option)
Approval marking	2014/35/EU (Low Voltage Directive), 2011/65/EU (RoHS II) 93/68/EEC (CE-mark)

Document revision

Table 3: Document revision

Revision	Date	History:	Status:
REV00	2018-10-09	INITIAL DRAFT	DRAFT
REV1	2019-09-27	INITIAL RELEASE	RELEASED

Contents

	Safety notes	3	5
	Product identification	4	ŀ
	Standards	5	;
	Document revision	5	;
	Contents	6	;
	List of figures	9)
	List of tables	. 10)
1	Overview	.11	
	1.1 Content	. 11	J
	1.2 Organization of manual	. 11	
	1.3 Related documentation	. 11	
2	Active Filter Overview	.12)
	2.1 Introduction to the Technology	. 12	2
	2.1.1 The Problem: Poor Power Quality	. 12)
	2.1.2 The Solution: Active Filters	. 12)
	2.1.3 Common applications which can benefit from Active Filters	. 12)
	2.1.4 How Active Filters Work	. 12)
	2.2 System Overview	. 13	;
	2.2.1 Features	. 13	}
	2.2.2 Main components overview	. 14	ŀ
	2.2.2.1 User interface (HMI-3 Extended) (optional)	. 14	ļ
	2.2.2.2 PIB - Power Indication Button (HMI-3 Basic)	. 15	5
	2.2.2.3 Customer Interface	. 15	5
	2.2.2.4 Auxiliary fuses	. 15	5
	2.2.2.5 Power connection terminals (U, V, W)	. 15	5
	2.2.2.6 Earth connection (PE)	. 15	5
	2.2.2.7 User signal interface (X11)	. 16	5
	2.2.2.8 Current transformer interface (X12)	. 16	5
	2.2.2.9 LAN connection (X21)	. 16	5
	2.2.2.10 Multi-master interface (X22 & X23; optional)	. 16	5
	2.3 Filter configuration	. 17	,
3	Getting started	.18	}
	3.1 Receiving and unpacking	. 18	;
	3.2 Installation	. 18	;
	3.3 Configuration and Commissioning	. 18	}
4	Installation	.19)
	4.1 Unpacking the Active Filter	. 19)
	4.1.1 Before unpacking and Installation/Commissioning	. 19)
	4.1.2 Lifting the Active Filter in its box	. 19)

	4.1.3 Lifting the Active Filter	. 20
	4.1.4 Wall mounting and preservation of the Active Filter	. 21
	4.1.5 Mounting IP21 roof (optional)	. 22
	4.1.6 Storage conditions	. 22
	4.1.7 Transport conditions	. 22
4	.2 Environmental conditions	. 23
	4.2.1 Operating conditions	. 23
	4.2.2 Physical conditions	. 23
	4.2.3 Cooling air flow requirements	. 23
4	.3 Connection of the Active Filter	. 24
	4.3.1 Overview connection terminals of the ADF P25	. 24
	4.3.2 Power connection terminals (U, V, W)	. 24
	4.3.2.1 Selection of power cable size	. 25
	4.3.2.2 Main fuse selection	. 25
	4.3.3 Protective earth (PE) connection	. 26
	4.3.4 Auxiliary fuse selection	. 26
	4.3.6 User signal interface (X11)	. 27
	4.3.7 Current transformer terminals (X12)	. 27
	4.3.7.1 Selection of current transformers	. 28
	4.3.7.2 Recommended current transformer cable size	. 28
	4.3.7.3 Location of current transformers	
	4.3.7.4 Connection and wiring of current transformers	. 29
	4.3.7.6 Connection of current transformers with paralleled systems	. 31
	4.3.7.7 Use of summation current transformers	. 31
	4.3.8 Local area network (X21)	. 31
	4.3.9 Multi-master bus (X22 & X23; optional)	. 32
5	Maintenance	.33
5	.1 Biannual inspection	. 33
	5.1.1 Removal of covers	. 33
	5.1.2 Visual inspection	. 33
	5.1.3 Cleaning	. 34
	5.1.4 Electrical connection	. 34
	5.1.5 Cooling system	. 34
Ap	pendix A Technical Specifications	.35
ł	A.1 Technical Data – ADF P25	. 35
ł	A.4 Dimensions – ADF P25	. 36
ł	A.6 Dimensions – ADF P25 (IP21)	. 37
Ap	pendix B Compatibility with passive compensation	.38
Ar	pendix C Harmonics derating	.39
-	C.1 Single harmonic maximum current	

C.2 Determining the thermal limit	
C.3 Summary	40
Appendix D Power derating	41
D.1 Altitude derating	
D.2 Overtemperature derating	

List of figures

Figure 1: Basic operating principle	. 13
Figure 2: Uncompensated load current (left), Compensation current (middle), Compensated net current (right)	. 13
Figure 3: ADF P25 external overview with HMI	. 14
Figure 4: Customer Electrical Interface of ADF P25	. 15
Figure 5: Correct lifting of the Active Filter	. 20
Figure 6: Footprint for wall mounting the Active Filter (in mm)	. 21
Figure 7: Mounting IP21 roof	. 22
Figure 8: Air flow in ADF P25	. 24
Figure 9: X12 terminals; with closed short circuit	. 27
Figure 10: Current Transformer placement diagram – closed loop	. 29
Figure 11: Current Transformer placement diagram – open loop	. 29
Figure 12: No current transformer in Sensorless Control	. 29
Figure 13: ADF P25 Current Transformer connection diagram – closed loop	. 30
Figure 14: Current Transformer connection diagram – paralleled units	. 31
Figure 15: Example setup for Multi-master operation	. 32
Figure 16: Dimensions ADF P25 (in mm)	. 36
Figure 17: Dimensions ADF P25 IP21 (in mm)	. 37
Figure 18: Connection of an Active Filter unit, passive compensation, and location of CTs	. 38

List of tables

Table 1: Applicable ADF P25 models	4
Table 2: Standards	5
Table 3: Document revision	5
Table 4: PIB color coding	. 15
Table 5: Maximum storage conditions	. 22
Table 6: Maximum transport conditions	. 22
Table 7: Maximum operating environmental conditions	. 23
Table 8: Minimum air flow requirements	. 23
Table 9: ADF Power connection data	. 25
Table 10: Recommended cable sizes	. 25
Table 11: Auxiliary fuse selection	. 26
Table 12: External interface terminal X11	. 27
Table 13: External interface terminals X12	. 28
Table 14: Current transformer (CT) specification	. 28
Table 15: Burden as function of cable size and length	. 28
Table 16: ADF CT connection data	. 28
Table 17: CT connection table	. 30
Table 18: Technical specifications ADF P25	. 35
Table 19: Maximum current output on single harmonics	. 39

1 Overview

1.1 Content

This manual describes the hardware, installation and maintenance topics of the Comsys ADF P25 series of active filters.

1.2 Organization of manual

The ADF P25 manual is organized in two parts, namely:

- 1. ADF P25 Hardware Manual, doc no 1 199 462 (this document)
- 2. ADF P25/P100/P300 User Manual, doc no 1 199 172

The Hardware Manual covers hardware related issues, such as installation, cable selection, CT configuration, preventive maintenance, and troubleshooting.

The user manual covers issues which are governed by the installed software in the system such as operation, initial configuration and commissioning. Hence, when the system is updated, a new User Manual is supplied.

1.3 Related documentation

- ADF P25/P100/P300 User Manual; doc no 1 199 172
- ADF P25 Circuit diagram
- ADF P25 Service Manual

2 Active Filter Overview

2.1 Introduction to the Technology

Comsys offers a new generation of high performance power quality products for industrial, utility and commercial applications based on active filter technology, which removes the losses and restores the natural wave shape of the current.

2.1.1 The Problem: Poor Power Quality

Transients, harmonics, voltage variations (including flicker) and unbalance puts the power grid, machines, motors and computer equipment under considerable stress resulting in disturbances, production stops, waste of energy and reduced lifetime. These terms, among others, constitute power quality.

A large part of the equipment connected to the power grid creates disturbances, voltage variations and undesired harmonics that pollute the grid. This pollution generates losses, disturbances, productions stops and reduces expected lifetime of cabling, transformers and other installed equipment as a cause of the excess load.

This leads to decreased capacity in the electrical network, less effective electrical power consumption and energy losses that transforms into both technical and economic costs.

2.1.2 The Solution: Active Filters

Traditionally fixed, electro-mechanical and semiconductor controlled filters and/or compensators have been used to limit or minimize power quality problems in the network.

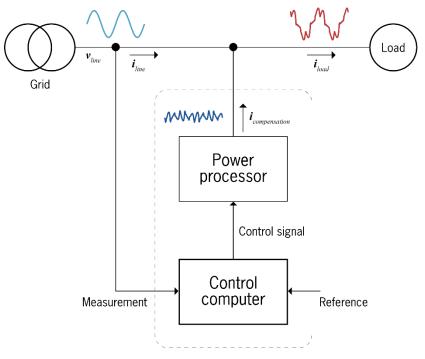
They operate mainly on a fixed or stepped basis using passive elements. All these solutions suffer from the same drawbacks – they add losses, are installation specific and have no ability to adapt to or follow dynamic load changes.

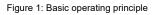
The Active Dynamic Filter (ADF) eliminates loss creating behaviors such as harmonics, flicker, voltage variations, resonances and reactive energy using a highly dynamic, step less digitally controlled compensation and filtering approach. By continuously monitoring the network and injecting exactly the right amount of compensation current – at exactly the right time – the most efficient and accurate solution to any power quality problem can be achieved.

This approach enables the current waveform to be restored instantaneously, the current consumption to be lowered and changes in load or installation conditions to be fully compensated at all times.

2.1.3 Common applications which can benefit from Active Filters

- Harmonic/reactive power suppression in 3-phase systems
- Industrial production machines (e.g. mills, presses)
- Variable speed drive systems (AC drives, DC drives)
- Electrical welding systems
- Plastic machinery (extruders, injection molders, film treatment machines)
- Power generation systems and UPS equipment
- Electrolytic processes
- Induction heating


2.1.4 How Active Filters Work


An active filter is basically a very advanced computer controlled current generator with the ability to produce any shape or form of current with little or no delay.

A simplified diagram of the operating principle is shown in Figure 1. The system is connected in parallel with the load requiring compensation.

Currents and voltage delivered from the network are measured and analyzed, to determine if disturbances such as e.g. reactive displacement and/or harmonics are present.

The system injects compensation currents which is the exact opposite of the e.g. harmonics and/or reactive displacement to cancel out the undesired behavior of the load.

The Figure 2 shows how the current consumed by an electrical load may look like prior to and during compensation. Before compensation, the current consists of several harmonics in addition to the fundamental, which are apparent from the current's deformed waveform. After injection of the compensation current, the load current's natural sinusoidal waveform is restored and the loss creating behaviors have been eliminated.

The function of the power transmission system is restored, which leads to saved energy, lower disturbances or in short – improved power quality and significantly lowered costs in electrical installations.

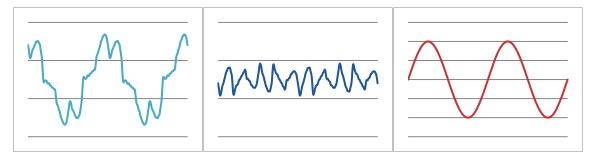


Figure 2: Uncompensated load current (left), Compensation current (middle), Compensated net current (right)

2.2 System Overview

The Active Filter ADF P25 is a stand-alone and modular high power active power filter. It can be installed inside a machine as OEM, inside a cabinet in system integration or directly on the wall. Several ADF P25 units can work in parallel.

2.2.1 Features

General features:

- Compact design in ready-to-use wall mounted enclosure
- High performance and reliability
- Advanced digital control and low response time

- Several units can be operated in parallel for higher power ratings
- Suitable for embedded solutions
- Non-overloadable and insensitive to changes in network or load conditions
- Easy installation, commissioning and maintenance

2.2.2 Main components overview

This section describes the major components of the ADF P25 Active Filter.

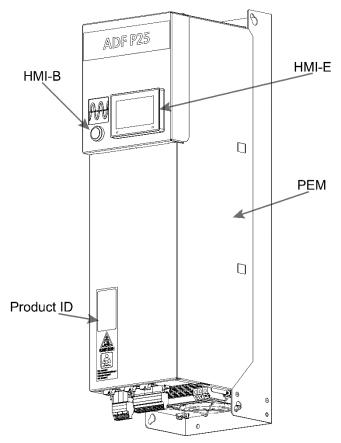


Figure 3: ADF P25 external overview with HMI

2.2.2.1 User interface (HMI-3 Extended) (optional)

All settings, configuration and operation can be performed from the HMI (Human Machine Interface) panel, see Figure 3. Please refer to the ADF P25/P100/P300 User Manual (1 199 172) on how to use the HMI.

2.2.2.2 PIB - Power Indication Button (HMI-3 Basic)

Basic operations like start and stop, can be performed on the PIB. The button also shows basic operation information on an indication light, integrated in the button.

The ADF is powered ON by pressing this button short and powered OFF by pressing the button for two seconds.

Color	Description	Button action
Fading red	System in trip and log is being written to SD-card	None
Solid red	System in trip	Acknowledge all alarms
Fading yellow	Pre-charge / all other states	None
Solid yellow	System stopped	Start system
Fading green	System is in standby mode	Stop system
Solid green	System is running	Stop system
None	System is powered off	Boot system

Table 4: PIB color coding

2.2.2.3 Customer Interface

The customer interface is located in the bottom of the unit, as depicted in the figure below.

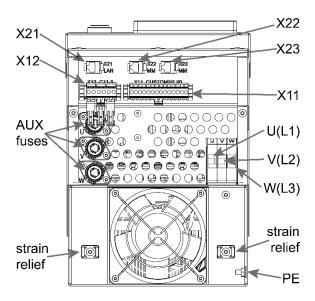


Figure 4: Customer Electrical Interface of ADF P25

2.2.2.4 Auxiliary fuses

The auxiliary fuses, called "AUX fuses" in Figure 4, are located at the bottom of the unit, protects voltage measurement circuits, pre-charging circuits and auxiliary power systems in the Active Filter.

ATTENTION: Do not attempt to exchange the AUX fuses while the unit has power on its main terminals.

2.2.2.5 Power connection terminals (U, V, W)

Used for connection of mains to the system. See section 4.3.2 for detailed connection information. The terminals are placed in the bottom section of the Control Module.

2.2.2.6 Earth connection (PE)

Main PE connection.

2.2.2.7 User signal interface (X11)

The user signal interface terminals, X11, are used for interface to external devices via alarm outputs and digital inputs. See section 4.3.6 for more information on how to connect digital inputs and outputs.

2.2.2.8 Current transformer interface (X12)

Current transformer interface terminals, X12, are used for connecting current transformers. See section 4.3.6 for more information on how to connect current transformers (CT's).

2.2.2.9 LAN connection (X21)

LAN connection for interfacing the ADF Dashboard Web-User-Interface. X21 also offers a Modbus TCP interface (optional).

2.2.2.10 Multi-master interface (X22 & X23; optional)

MM-bus connections X22 and X23 for interconnecting ADF systems for parallel operation in closed loop setup.

2.3 Filter configuration

The product ordered is defined by the product string. The product string consists of the basic type of product, such as ADF P25-30/480, but also a list of factory built-in options. Please note that other options exist that are not immediately part of the product string, such as software licenses that do not have a hardware impact. The nomenclature of the product string is defined as below:

ADF PmodQ-cur/vol{-UL}_{OPTION STRING: ABCDEFGHIJ} ADF P25-30/480{-UL}_ABCDEFGHIJ

ADF P25-30/480_T-B----20

All positions are always visible within the product string, except for 'Q' that is a qualifier that enables a certain type of product. When an option is enabled, it is lit up in the string.

Also note that the encapsulation class (ingress protection) is documented in the last two letters. 20 in this case means IP20. All relevant ADF P25 codes are listed in the table below:

Position	ADF	Active Dynamic Filter		
Product Type (mod) and Qualifier (Q)				
ADF P25 ADF P25-30/480_T-B20	P25	3phase-3wire, air cooled, wall-mounted Active Dynamic Filter		
	Curre	ent Rating (cur)		
CUr ADF P25-30/480_T-B20	30	30 A rating on ADF P25 in 208 – 480 V versions (IEC)		
	Volt	age Level (vol)		
VOI ADF P25-30/ 480 _T-B20	480	Permissible voltage levels are: 208 – 480 V		
		ns (ABCDEFGH)		
	Groun	ding System (A)		
A Adf p25-30/480_T-B20	т	TN/TT grounding system (standard if not otherwise specified)		
	Reserved (u	nused) option code (B)		
B ADF P25-30/480_T-B20	-	Currently not in use		
		HMI (C)		
С	В	Basic HMI with PIB only		
ADF P25-30/480_T- B 20	E	Extended HMI with PIB and 4.3" color touchscreen interface		
F	Reserved (unus	ed) option codes (DEFGH)		
DEFGH ADF P25-30/480_T-B20	-	Currently not in use		
Protection class (IJ)				
	20	IP20 (IEC/CE systems only)		
IJ Adf p25-30/480_T-B 20	21	IP21 (IEC/CE systems only)		
	54	IP54 (IEC/CE systems only; not yet launched)		

3 Getting started

This section is intended to help you get through to operate the Active Filter with the least work on your part. Guidance and hints are provided. First it is important that you read and observe the safety notes in the beginning of this manual to help avoid damage to equipment, installation and persons.

3.1 Receiving and unpacking

On receiving the unit read notes in section 4.1. If the system is to be transported on site, please be sure to avoid excessive strains. In particular, no components must be bent, or isolating distances altered in the course of transportation or handling. No contact must be made with electronic components and contacts. Also note that all operations serving transport, installation and commissioning as well as maintenance must to be carried out by skilled technical personnel.

Active Filters contain electrostatic sensitive components which are liable to damage through improper use. Electric components must not be mechanically damaged or destroyed (potential health risks).

3.2 Installation

It is important to prepare the installation site prior to installing and connecting the Active Filter. In the section 4, important information such as location of terminals, cable size recommendations, ADF P25 over current protection and cooling air flow requirements are discussed. To maintain operation and long equipment life it is vital to keep environmental conditions in accordance with the specifications.

Current transformer (CT) selection is important for good performance. Read about CT selection and connection in section 4.3.7 and if possible use separate CTs, not shared with other equipment e.g. power quality meters.

Notice that an operation without current transformers is also possible. "Sensorless Control" is an optional operation mode.

Good earth connection is also important to achieve best results and electrical safety as described in the section 4.3.3.

It is important that any materials or method for connection used is within limits with respects to local safety regulations. Also make sure that appropriate fuses are fitted in the mains connection.

3.3 Configuration and Commissioning

The Active Filter has extensive functionality built-in for several modes of operation.

The ADF P25/P100/P300 User Manual (1 199 172) details how to configure the software parameters for the ADF P25.

4 Installation

4.1 Unpacking the Active Filter

Each Active Filter is delivered in packaging suitable for transportation. Upon reception of the Active Filter, visually inspect that the packaging is in good condition. Verify that all below listed items are present in the package:

- ADF P25 Hardware Manual, doc no 1 199 462 (this document)
- The ADF P25/P100/P300 User Manual (1 199 172)

ATTENTION: Before unpacking and installing the Active Filter please read through the following pages THOROUGHLY to make sure that it is handled in the right way..

Do not attempt to move the unit before reading the lifting instruction and act accordingly.

Attempt to move the equipment without proper equipment and not according to instructions may result in damage of the equipment and injury.

4.1.1 Before unpacking and Installation/Commissioning

Before moving the Active Filter without its protective packaging please pay extra attention to the section in this document that handles lifting. During transport and storage and before commissioning, keep the system protected from dust and water ingression.

ATTENTION: Make sure to protect the Active Filter at all times, especially during installation since the product contains very sensitive power electronics.

4.1.2 Lifting the Active Filter in its box

The ADF P25 can be handled by forklifts and cranes as long as it is packaged in its protective packaging.

4.1.3 Lifting the Active Filter

The ADF P25 must be lifted and moved according to the instructions in this section.

Start by removing part of freight box in such a way that the ADF P25 is accessible from all sides and top when lying on its back. Only the part of the freight box under the ADF P25 back is then left. The ADF P25 is screwed to the pallet with one screw on the top and one at the bottom.

The Active Filter may only be lifted in the lifting ears on top and bottom of the Active Filter. This is only possible without the optional IP21 cover. The length of the straps must exceed 220 mm / 9" and be of the same length according to Figure 5. Protect the ADF P25 from scratching and other damages during lifting, by adding soft protective material between the ADF P25 and other objects.

The filter may also be manually lifted using special metal rods. Insert the metal rods in the lifting holes and manually lift the filter. The metal rods are not included. Generally round metal rod(s) can also be used.

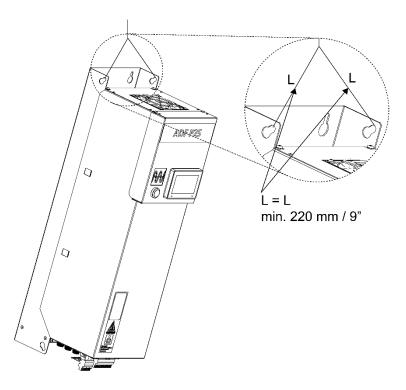


Figure 5: Correct lifting of the Active Filter

If moving the Active Filter with for example a fork lift, it may only be moved lying down on its back, not on its sides nor standing.

4.1.4 Wall mounting and preservation of the Active Filter

Make sure the wall and the fastening bolts can support the weight (up to 38 kg) of the Active Filter. Start with fastening the screws on the top (use M10 with flat head) in the wall as suggested by the footprint in Figure 6. Leave space between the head of the screw and the wall for the back side of the Active Filter to be fitted.

Lift the Active Filter into place over the keyholes, push it flat to the wall and lower it in place. Tighten the screws. The screws in the bottom can then be mounted.

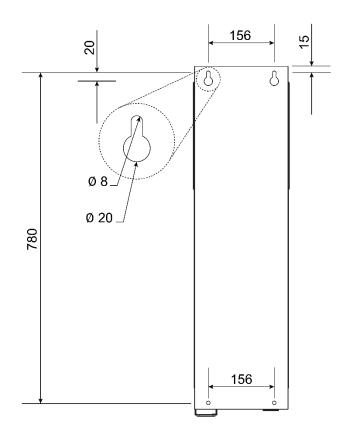


Figure 6: Footprint for wall mounting the Active Filter (in mm)

After the Active Filter has been mounted on the wall, protect the system from dust and other harmful particles.

4.1.5 Mounting IP21 roof (optional)

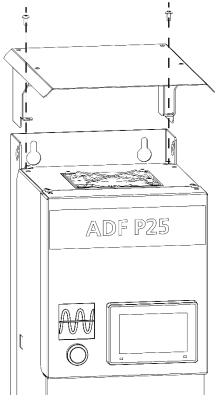


Figure 7: Mounting IP21 roof

The ADF P25 is available with an IP21 option. This option is not mounted when shipping.

To mount the IP21 roof, two screws (size 3 hex-screw) in top of the ADF P25 needs to be removed. The IP21 roof must be put on top and the screws then needs to be put back.

4.1.6 Storage conditions

During storage of the unit, the unit should be kept within the following conditions. The conditions are acceptable only when the unit is kept in its shipping packaging.

Table 5: Maximum storage conditions

Maximum storage conditions (in protective shipment package)	
Temperature	-25 °C to 70 °C (-13 °F to 158 °F)
Relative humidity	Less than 95 %, non-condensing
Environmental conditions	Chemical class 3C3 Mechanical class 3S3

4.1.7 Transport conditions

During transport, the unit should be kept within the following conditions. The conditions are acceptable only when the unit is kept in its shipping packaging.

Table 6: Maximum transport conditions

Maximum transport conditions (in protective shipment package)			
Temperature	-25 °C to 70 °C (-13 °F to 158 °F)		
Relative humidity	Less than 95 %, non-condensing		
Environmental conditions	Chemical class 3C3 Mechanical class 3S3		

4.2 Environmental conditions

4.2.1 Operating conditions

The unit is suitable for indoor operation only. If the unit is operated within the below limits, full power may be utilized. During more demanding conditions, the unit will be derated when approaching full power.

The unit must be placed in a well-ventilated area. For cooling air flow requirements, see section 4.2.3.

Table 7: Maximum operating environmental conditions

Maximum operating environmental conditions	
Temperature	0 °C to 50 °C, derating applies above 40 °C 32 °F to 122 °F, derating applies above 104 °F
Relative humidity	Less than 95 %, non-condensing
Altitude	1000 m (3300 ft) Derating may be required at higher altitude. For more details, see "Appendix D Power derating"
Environmental conditions	Chemical class 3C2 Mechanical class 3S2

ATTENTION: Make sure that the unit is installed in an environment without conductive or corrosive dust. If conductive or corrosive dust is present extra precautions must be taken. Contact your COMSYS representative.

4.2.2 Physical conditions

There should be a minimum of 100 mm / 4" clearance to the ceiling above the roof of the unit in order not to obstruct cooling air flow.

In front of the unit, there should be a minimum clearance of 400 mm / 16" to allow removal of cover. However, make sure to enable service access, for example it must be possible to physically access the unit from the front. Also, in front of the unit, there should be a minimum clearance of 100 mm / 4" to avoid restriction of air intake, assuming no external restrictions for air flow, for example if the ADF P25 is placed in a cabinet.

If the unit is placed inside an enclosed cabinet, the door is not considered a restriction. However, consider that cooling air must not be restricted see section 4.2.3.

There is no minimal clearance to floor, however make sure that mains and signal cables have space for bending and connecting. There is no minimal clearance sideways however consider that the unit can become hot under operation.

Local regulations may impose stricter demands.

4.2.3 Cooling air flow requirements

The cooling air flow requirements are dependent on operating conditions and load cycles. The following table states the maximum demanded air flow from each ADF P25:

Table 8: Minimum air flow requirements

Model Maximum air flow		Maximum losses
ADF P25-30/480	300 m³/h	< 1000 W

It is crucial that the Active Filter can utilize the needed air flow during maximum operating conditions. The cooling air may not exceed 50 °C / 122 °F under any circumstances. Derating applies above 40 °C / 104 °F.

ATTENTION: Make sure that the ambient temperature is below 50 °C / 122 °F under all circumstances.

Make sure that the air drawn into the unit does not contain corrosive or conductive gases of any kind. Make sure that the physical mounting guidelines are followed and that no obstruction lower the air flow. Take care of the hot air emitted from the unit in a proper way.

Failure to observe these guidelines may result in premature aging or failure of the equipment.

The Active Filter contains internal fans that will ensure that the air flow reaches the needed capacity during maximum operating conditions. The emitted hot air must be taken care of by the room housing the unit. Hot air is emitted from the top of the unit according to the figure below. Note that the unit has two main fans; one in the bottom and one in the top.

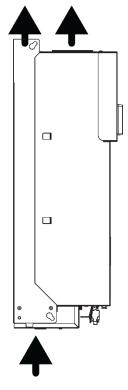


Figure 8: Air flow in ADF P25

4.3 Connection of the Active Filter

The Active Filter has three main connector terminals, U, V, W, for the power interface, X11 for external user functionality signals and X12 for CTs, as seen in Figure 4. They are located at the bottom of the unit.

4.3.1 Overview connection terminals of the ADF P25

In Figure 4 the connection area and the terminal names for the ADF P25 products can be seen.

4.3.2 Power connection terminals (U, V, W)

The mains power connection is made at terminals U, V, W (see Figure 4), found in the bottom of the unit. U, V, W accepts a wide range of different cable types (copper or aluminum, solid or stranded with or without ferrule and ferrule with or without plastic sleeve) up to 25 mm².

Table 9: ADF Power connection data

ADF Power connection data	
Conductor cross section with ferrule lug min.	4 mm ²
Conductor cross section with ferrule lug max.	25 mm ²
Conductor cross section stranded min.	4 mm ²
Conductor cross section stranded max.	25 mm ²
Conductor cross section AWG min.	12 AWG
Conductor cross section AWG max.	4 AWG
Stripping length	14 mm
Tightening torque	2 Nm

ADF P25 systems have one terminal each for U, V and W.

Mount the cabling using the appropriate accessories.

ATTENTION: After running the Active Filter, wait at least 60 minutes after opening the main feeding circuit to guarantee that there is no residual voltage on the DC capacitors. Failure to observe these guidelines may result in injury or loss of life.

ATTENTION: Note that the Active Filter is fed from an external point. Only in this point, like a MCB or fuse disconnector, it is possible to open the main feeding to the Active Filter.

ATTENTION: The active filter must be connected via either fuses or a circuit breaker that can be operated by the user and are suitable for the short circuit power in the feeding network. Since there is no main fuse or breaker in the ADF P25, the only way to make the system fully de-energized is to open the fuse or breaker feeding U, V, W.

4.3.2.1 Selection of power cable size

In order to guarantee that the cables are not overheated some derating has to be introduced. This is due to the skin effect caused by the harmonics. The cable sizes in Table 10 are given as recommendations without warranty of suitability.

Table 10: Recommended cable sizes

Intended unit max current	Derating factor
30 A _{RMS}	x 1.5

ATTENTION: The dimensions given in Table 10 only take the skin effect into consideration due to the load current being mostly harmonics. Local regulations must be observed and followed and other installation conditions which may affect the sizing of the cables, number of parallel conductors, distance and layout between conductors, and such parameters. Consult your cable manufacturer for the appropriate cable. The above guidelines are only recommendations with no warranty of suitability.

4.3.2.2 Main fuse selection

The switchgear feeding the unit must provide a breaker or fusing capable of interrupting the short circuit power. The unit must be protected for over current at least according to the nominal current rating of the model installed.

Local regulations may impose further demands on external fusing and/or external circuit breakers.

ATTENTION: Note that the fuses may have to be derated due to the load characteristics if for example the unit is used for harmonics only. Consult with the fuse supplier.

Comsys recommend the use of fast fuses (semiconductor type) for protecting the

NOTE ADF P25. With semiconductor fuses, the damage in a short circuit condition is reduced, meaning lower repair cost. Note that in this case cable protection must also be considered.

4.3.3 Protective earth (PE) connection

Connect the protective earth to the PE screw stud (see Figure 4; lower back of the cabinet). Connecting points are two M8 screws. A cable area of at least 16 mm² is recommended. Tighten the connection with a torque of 20 Nm.

ATTENTION: The protective earth connection must be connected to PE in the installation and NOT to the N-conductor.

4.3.4 Auxiliary fuse selection

The Active Filter has internal fuse blocks for protection of the Auxiliary power circuit. The fuse types are defined in the below table.

Table 11: Auxiliary fuse selection

Product line 480 V, IEC	Fuse type	Brand example
ADF P25	Ferrule fuse link, 10x38, gG, 500VAC, 4A	Mersen FR10GG50V4

ATTENTION: Warranty is void if the wrong fuse type is used.

Do not open fuse link holder when unit is live.

4.3.6 User signal interface (X11)

The external interface terminal block X11 (see section 2.2.2.3) is the connection for digital inputs, digital outputs and alarm output.

Table 12: External interface terminal X11

Terminal No	Description
X11:1	Digital IN1 NO, 24 V _{DC}
X11:2	Digital IN2 NO, 24 V _{DC}
X11:3	Digital IN3 NO, 24 V _{DC}
X11:4	Digital IN COM GND
X11:5	N/A
X11:6	Digital OUT1 NO
X11:7	Digital OUT1 COM
X11:8	N/A
X11:9	N/A
X11:10	N/A
X11:11	N/A
X11:12	Alarm relay NO
X11:13	Alarm relay COM
X11:14	PE

The digital outputs Alarm relay and Digital output OUT1 are of the following specification:

• Switches 5 A at 250 V_{AC} / 30 V_{DC}, resistive load

4.3.7 Current transformer terminals (X12)

Current transformers are connected to terminal block X12:1 – X12:6 in the bottom of the unit.

CT's are not needed in all installations. The optional Sensorless Control operates without the need of CT's. In Current Control (standard), CT's are required.

The terminal block X12 provides a short circuit possibility for the incoming cable. The short circuit needs to be removed before operating.

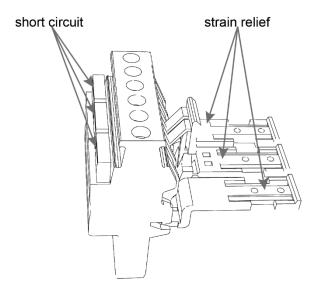


Figure 9: X12 terminals; with closed short circuit

Table 13: External interface terminals X12

Terminal No	Description
X12:1	S1 (k), Current transformer U (L1)
X12:2	S2 (I), Current transformer U (L1)
X12:3	S1 (k), Current transformer V (L2)
X12:4	S2 (I), Current transformer V (L2)
X12:5	S1 (k), Current transformer W (L3)
X12:6	S2 (I), Current transformer W (L3)

4.3.7.1 Selection of current transformers

The current transformers should fulfill the following specification:

Table 14: Current transformer (CT) specification

Current transformer specification			
Class	1.0 or better		
Primary ratio	Exceeding the maximum load current including harmonics, reactive power, and transients		
Secondary ratio	5 A		
ADF total CT burden	0.193 VA		
Symmetry	Three identical CTs must be used		

Note that the size of the CT is critical to the performance of the system when operating in current control. Using a very large CT in relation to the total load size will result in poor resolution and hence poor results.

ATTENTION: Current Transformers with 5 A secondary must be used. CTs with 1 A secondary will give to low measurement resolution.

4.3.7.2 Recommended current transformer cable size

The recommended cable size used for connection of the current transformers is dependent of the output power of the current transformers and total length of the cables. A calculation of burden must be performed to guarantee that the burden of the CT is not exceeded. Table 18 shows the need required burden in relation to the cable size and length for some examples.

	5 m	10 m	20 m	30 m	50 m	100 m	160 m
0.5 mm ²	4.4 VA	8.6 VA	17.0 VA	25.4 VA	42.2 VA	84.2 VA	134.6 VA
0.8 mm ²	3.0 VA	5.8 VA	11.4 VA	17.0 VA	28.2 VA	56.2 VA	89.8 VA
1.0 mm ²	2.3 VA	4.4 VA	8.6 VA	12.8 VA	21.2 VA	42.2 VA	67.4 VA
1.5 mm ²	1.6 VA	3.0 VA	5.8 VA	8.6 VA	14.2 VA	28.2 VA	45.0 VA
2.5 mm ²	1.1 VA	1.9 VA	3.6 VA	5.3 VA	8.6 VA	17.0 VA	27.1 VA
4.0 mm ²	0.8 VA	1.3 VA	2.3 VA	3.4 VA	5.5 VA	10.7 VA	17.0 VA
6.0 mm ²	0.6 VA	0.9 VA	1.6 VA	2.3 VA	3.7 VA	7.2 VA	11.4 VA

Table 15: Burden as function of cable size and length

Table 16: ADF CT connection data

ADF CT connection data			
Conductor cross section solid min.	0.14 mm ² / AWG 26		
Conductor cross section solid max.	6 mm ² / AWG 10		
Conductor cross section stranded min.	0.14 mm ² / AWG 26		
Conductor cross section stranded max.	6 mm ² / AWG 10		

4.3.7.3 Location of current transformers

The location of the current transformers is critical to the function of the Active Filter. The following guidelines should be observed for proper operation:

Closed loop control is preferred. This means that the CTs monitor the load current and the Active Filter current. However, open loop control is also possible – meaning that the CTs are placed downstream to the mains connection of the Active Filter unit.

Beside the current control in, in open and closed loop, the ADF systems also support the optional Sensorless Control.

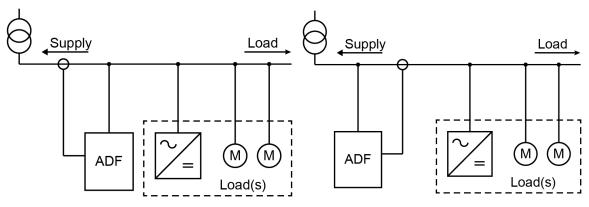


Figure 10: Current Transformer placement diagram - closed loop

Figure 11: Current Transformer placement diagram - open loop

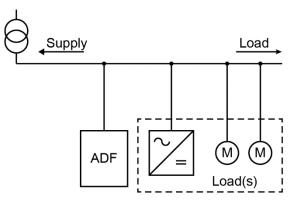


Figure 12: No current transformer in Sensorless Control

ATTENTION: Never open the circuit of a connected current transformer. During all connection work, short circuit the secondary of the current transformers.

Failure to short circuit the current transformers may cause dangerous voltages, arcs and destruction of the current transformers. When connection is complete, the short circuit must be removed.

4.3.7.4 Connection and wiring of current transformers

- The S1 (k) terminal of each CT must be oriented to the supply side. The S2 (I) of each CT must be oriented toward the load side.
- The CTs must be grouped properly phase wise with the corresponding mains connection. This means that the connected to phase 1 (U) on X12 must monitor the current corresponding to phase L1 (U) of the network line connection.
- The phases must be connected in proper rotation. V must lag U, W must lag V and U must lag W.
- Either S1 (k) or S2 (l) must be individually connected to PE (Protective Earth). The connection must be performed identically for each CT.
- The connection is made to terminal block X12:1 through X12:6.

• When using the Active Filter in conjunction with a passive filter, special requirements apply. See "Appendix B Compatibility with passive compensation" for further information.

The wiring should be connected according to Table 17.

Table 17: CT connection table

Phase	Current transformer	Terminal block
U / Phase L1	S1 (k)	X12:1
07 Fliase LT	S2 (I)	X12:2
V / Phase L2	S1 (k)	X12:3
V / Flidse L2	S2 (I)	X12:4
W / Phase L3	S1 (k)	X12:5
	S2 (I)	X12:6

In Figure 13 and **Error! Reference source not found.**, the correct connection of mains power and current transformers with correct grounding is illustrated. The example shows close loop operation on an ADF P25.

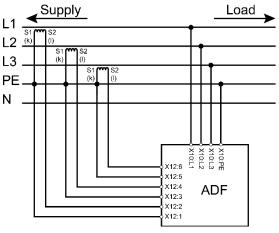


Figure 13: ADF P25 Current Transformer connection diagram – closed loop

4.3.7.6 Connection of current transformers with paralleled systems

Figure 14 illustrates correct connection of two paralleled Active Filters, again in closed loop operation with correct grounding:

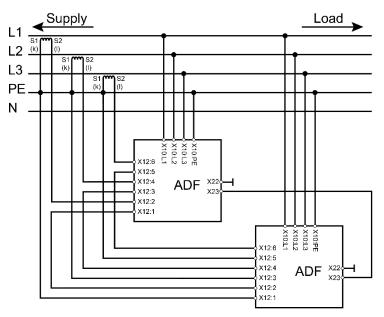


Figure 14: Current Transformer connection diagram – paralleled units

4.3.7.7 Use of summation current transformers

Summation current transformers can be used in certain configurations. Some examples of usable scenarios:

- When compensating loads, in closed loop operation, fed by two or more transformers which are paralleled. The secondary sides must then be added to the current input of the ADF P25 using a summation current transformer.
- When compensating loads, in open loop configuration, where the main CTs must be placed on two or more outgoing groups.

In all cases, when using summation CT's, the ratio must be selected so that full signal corresponds to 5 A on the secondary of the summation transformer going into the X12 terminal block.

4.3.8 Local area network (X21)

The RJ45 LAN socket allows connection to the SCC2 control computer and is used for configuration and monitoring of the ADF via a standard Ethernet network or directly from a PC. Optional this RJ45 also supports Modbus. Please see the User Manual for more information on how to connect to the ADF.

For fixed installations, Comsys suggests using a shielded Ethernet cable.

4.3.9 Multi-master bus (X22 & X23; optional)

The RJ45 MM-bus sockets are used for inter-ADF communication for example when several ADFs are operated in parallel in Multi-master operation. ADFs are connected as a daisy-chain with termination plugs in each end of the chain like shown in figure below. X22 and X23 are freely interchangeable.

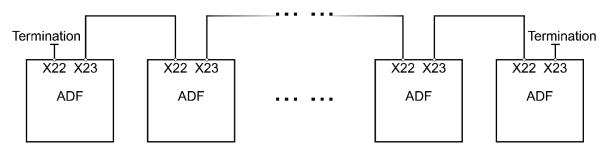
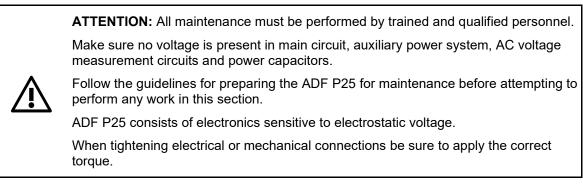


Figure 15: Example setup for Multi-master operation

A "FTP category 5" or better Network cable can be used to connect ADF's to each other. The maximum length of the entire cable is 40 m / 130 ft.

ATTENTION: The electrical interface of the RJ45 MM- bus connectors is different from that of the LAN. Be sure to only connect equipment approved by Comsys on this bus or equipment damage may result.


5 Maintenance

This chapter is divided into two parts; firstly, all systems maintenance which is identical to all variants of the ADF P25 is covered.

The ADF P25 is fully serviceable from the front, bottom and top after removing all covers. All internal parts can be changed without dismounting the entire unit if for example mounted on a wall.

Every 6 months, a routine inspection is performed. In most cases, no components are exchanged during biannual inspection.

TE Warranty is void if maintenance is not performed according to schedule.

Before attempting any maintenance, the ADF P25 must be shut down by disconnecting the mains in the customer switchgear or similar, followed by taking appropriate safety measures.

5.1 Biannual inspection

The following items are included in the maintenance procedure:

- Visual inspection
- Cleaning
- Cooling system
- Cover inspection
- Electrical connections

5.1.1 Removal of covers

To be able to perform inspections the covers must be removed.

Start by remove the small white cover mounted on the top by losing the screws and pull cover down. Make sure to disconnect the HMI and PIB cable.

Remove the main cover by loosen the mounting screws on the top and remove the screws on the bottom, then lift it off.

5.1.2 Visual inspection

The cover must be removed. A visual inspection must be performed of all the system. Check for any of the following items:

- Dust
- Condensation
- Abnormal smell, discoloration, soot or swelling of components
- Cracks in plastic covers
- Inspect DC capacitors for signs of overheating; be aware of swollen capacitors and signs of overheating. Such capacitors must be replaced.
- Inspect line filter AC capacitors, check for signs of damage.

- Inspect internal contactors; check for sign of damage such as soot or other discolor.
- Inspect internal cables for signs of insulation wear due to poor routing.

Pay particular attention to presence of conductive dust.

5.1.3 Cleaning

All dust must be removed. The best way of doing this is to use pressurized air (from a compressor system).

ATTENTION: The equipment is sensitive to ESD. Avoid cleaning the system with any method which may cause build-up of ESD; such as vacuum cleaning, using cloths, etc.

Dust build-up may cause unreliability and component failure in the worst case.

5.1.4 Electrical connection

Visually inspect all external electrical connections. Check for signs of heated cable terminations and damaged insulation.

Check the torque on mains connections and PE.

5.1.5 Cooling system

The ADF P25 has one main and additionally an auxiliary fan. The main fan in the bottom with air outlet on the top of the unit located at one quarter from the bottom and the auxiliary fan on the top of the ADF P25 cabinet.

After restarting the unit; check that no noise indicating fan wear is audible. Also check that the air flow is strong by putting the hand over the unit. Make sure that both fans are running; air should be coming out both from the heat sink outlet and from the top fan.

Appendix A Technical Specifications

A.1 Technical Data – ADF P25

Table 18: Technical specifications ADF P25

Model	ADF P25-30/480	ADF P25-30/480 IP54 version**
Rated power *	21 / 25 kVA	
Compensation current	30 A _{RMS}	
capacity at 50/60 Hz		
System voltage	480 V (208 – 480 V) ± 10%	
Nominal frequency	45 – 65 Hz (including floating frequency)	
Number of phases	3 phase 3 wire	
Connection type	3 phase without neutral (IT, TT)	
Harmonic compensation	individual compensation up to 49 th order	
Filter efficiency	better than 97 %	
Current compensation of	up to 1.0	
cos φ		
Expandability	ADF P25 units can be used in parallel	
Response time	< 1 ms	
Power dissipation	< 1000 W	
Maximum air flow	400 m ³ /h / 235 CFM	
requirement		
Noise level	< 60 dB(A)	TBD
Environment	0 to 95 % RH non-condensing, max altitude 1000 m / 3281 ft. without derating	
Operating temperature	0 to 50 °C, up to 40 °C without derating	
	32 to 122 °F, up to 104 °F without derating	
Dimensions	230 x 810 x 311 mm (W x H x D)	TBD
	31.5 x 31.9 x 12.2 inch (W x H x D)	
Weight	38 kg / 83.8 lbs	TBD
Cabinet color	RAL 7035 (light grey) RAL 5017 (traffic	cabinet RAL 7035 (light grey), base
	blue)	RAL 7022 (umbra grey)
Protection class	IP20, IP21** according to IEC 60529	IP54** according to IEC 60529
Environmental conditions	chemical 3C3, mechanical 3S3	
Electromagnetic	EN 55011	, Class B
compatibility		
Certificates	CE	

* Compensation power at 400 V / 480 V nominal voltage

** Option

A.4 Dimensions – ADF P25

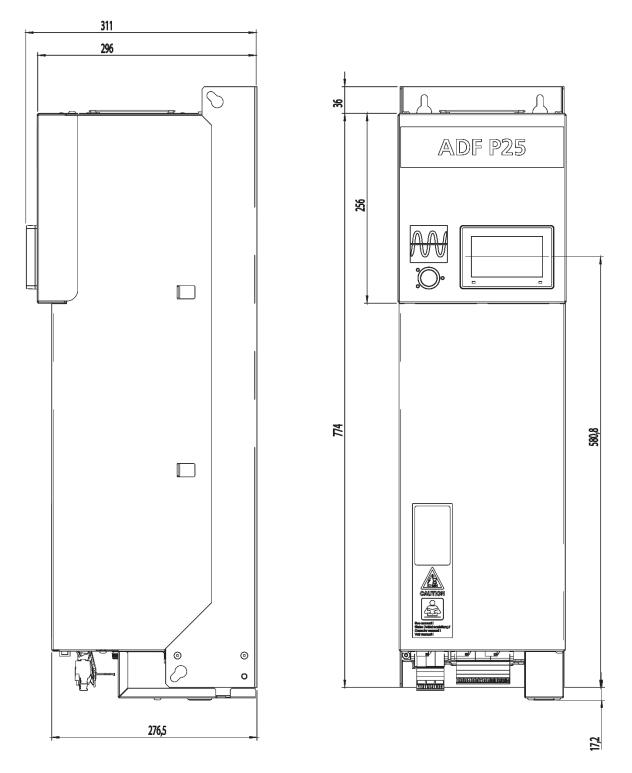


Figure 16: Dimensions ADF P25 (in mm)

A.6 Dimensions – ADF P25 (IP21)

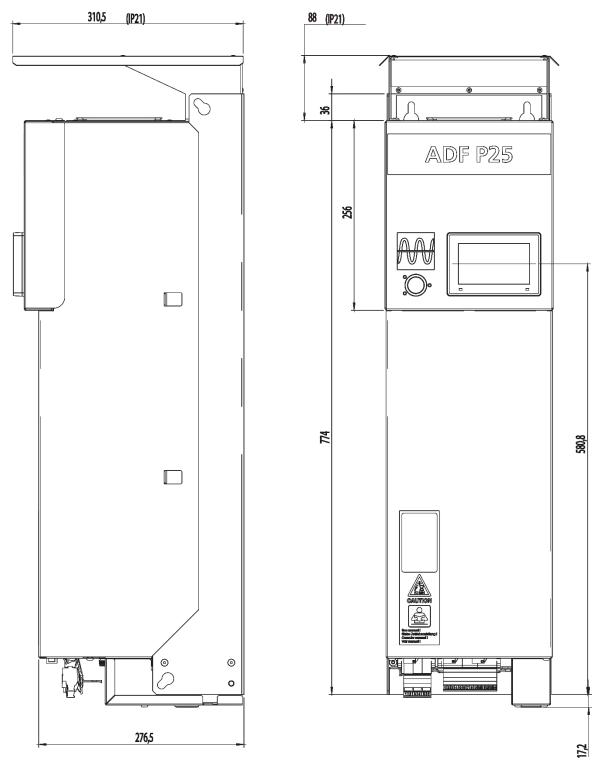


Figure 17: Dimensions ADF P25 IP21 (in mm)

Appendix B Compatibility with passive compensation

Capacitor banks are often used in various configurations to lower the reactive power in an installation. It is a recognized problem that the impedance of capacitors falls with rising frequency and hence capacitors act as a sink for harmonics.

It is **not recommended** to use Active Filter units in conjunction with direct connected passive compensation without series reactors. Detuned capacitor banks are easier to integrate with Active Filters.

In all cases, the capacitor bank should be connected prior to the current measurement used for the Active Filter, as illustrated in Figure 18 below. When using the Active Filter in conjunction with detuned capacitor banks, it is strongly recommended to configure the Active Filter for closed loop current measurement.

The passive compensation must be placed upstream to the Active Filter.

Note that the Active Filter unit's current transformers (CTs) are placed prior to the load, but after the passive compensation, viewing from the supply side.

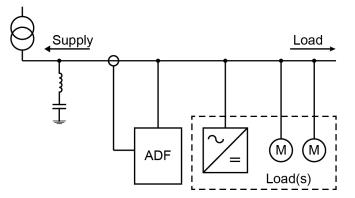


Figure 18: Connection of an Active Filter unit, passive compensation, and location of CTs.

ATTENTION: Failure to observe the orientation guidelines above will significantly shorten the lifetime of the passive compensation, lower the efficiency of both the Active Filter unit and the passive compensation, and may cause unpredictable results.

Appendix C Harmonics derating

The current rating of Active Filter units is specified at the system frequency (50 or 60 Hz). This is sufficient in all normal applications since higher harmonics are lower in amplitude in most cases. For special applications, requiring very high harmonic current in high harmonic orders, special care must be taken. A rating of 100 A_{RMS} does not imply that the unit can output 100 A_{RMS} @ 1250 Hz (25th harmonic in a 50 Hz system).

The following guidelines are useful for determining the maximum allowable higher harmonic current during normal operation of COMSYS Active Filters.

C.1 Single harmonic maximum current

The following guidelines are established for maximum continuous current only when the unit is running at maximum rated ambient temperature. During dynamic operation with lower ambient temperature than the maximally allowed, burst currents may be significantly higher. In the same fashion, in continuous operation at temperatures higher than the maximum allowed, the unit automatically derates the output to not shorten component lifetime.

The following table can be used to determine the maximum individual current, as percentage of the rated maximum compensation current:

h	Output (%)
1	100 %
3	100 %
5	100 %
7	100 %
9	90 %
11	80 %
13	75 %
15	70 %
17	65 %

Table 19: Maximum current output on single harmonics

h	Output (%)
19	60 %
21	55 %
23	55 %
25	50 %
27	45 %
29	45 %
31	40 %
33	40 %
35	40 %

Output (%)
40 %
35 %
35 %
35 %
30 %
30 %
30 %

In the given table, h is the harmonic order. For a unit rated at 100 A_{RMS} , the maximum current of the 23rd harmonic is consequently 55 A_{RMS} .

C.2 Determining the thermal limit

Given that each harmonic current is within the limits outlined above, the total limit of the system as a whole can be determined as follows. First, calculate the individual contribution of each harmonic:

$$I_{h,contrib} = I_h / OUT(\%,h)$$

where h is the harmonic order and Ih is the corresponding current. Finally, add the individual harmonic contributions as a root sum:

 $I_{\text{total}} = \text{SQRT}(I_{3,\text{contrib}^2} + I_{5,\text{contrib}^2} + \dots + I_{49,\text{contrib}^2} + I_{\text{reactive,contrib}^2})$

The answer is the amount of unit current rating needed to be able to compensate the load. Eventual reactive current can be added in the formula above as I_{reactive,contrib}.

Example:

A load needs 85 A_{RMS} at the 5th harmonic and 50 A_{RMS} at 7th harmonic. The individual contributions are I_{5,contrib} = 85 A_{RMS} / 100 % = 85 A_{RMS} for fifth harmonic and I_{7,contrib} = 50 A_{RMS} / 100 % = 50 A_{RMS} for the seventh harmonic. The RMS sum of the two components are 98.6 A_{RMS}. Thus, a 100 A unit will be sufficient to compensate the load. Adding an 11th harmonic of 35 A_{RMS} adds an equivalent contribution of 43.8 A_{RMS} yielding a total needed capacity of 107.8 A_{RMS} which will not work in an 100 A unit in continuous operation at maximum allowed ambient temperature.

C.3 Summary

In most cases the above guidelines are sufficient to establish the needed Active Filter size to fully compensate the desired harmonics. Since the exact calculations are complex the guidelines established in this document can be considered safe limits.

For detailed calculations or custom solutions, please contact your Comsys ADF supplier.

The formulas and guidelines are valid for all ADF P25 Active Filters systems up to the 49th harmonic.

Appendix D Power derating

D.1 Altitude derating

The current rating of the ADF units is specified up to an altitude of 1000 m / 3281 ft.. At higher altitudes the current rating will be reduced.

When using an ADF on altitudes above 1000 m / 3281 ft, the maximum output will be derated according to the following:

Altitude derating [%] = (h - 1000) / 100 (h = height in meter)

Altitude derating [%] = (h - 3281) / 328 (h = height in feet)

For example, at an altitude of 1500 m, the derating will be 5 %. In this case the compensation capacity of an ADF P25-30/480 will be derated from 30 A_{RMS} to 28 A_{RMS} .

D.2 Overtemperature derating

The ADF P25 loses 1.5 % of output current per degree Celsius over 40 °C. At 50 °C, the output current is reduced 15 %.

The system will trip at 55 °C. Temperature derating is automatic and only uses sensors present in the ADF P25 system.

Sweden

+46 10 209 68 00 info@comsys.se https://comsys.se/ADF/

Comsys AB does not assume any responsibility for use of any product or method described and also reserves the right to make changes at any time without prior notice in order to improve design and supply the best possible products.

Partner: