

SVG 30 SRÓCONA INSTRUKCJA OBSŁUGI

Wersja: A01 Data: 12.09.2019 BOM nr: A81150173 Sinexcel Electric Co. Ltd. Udostępnia wsparcie techniczne w sprawach serwisu urządzeń. Użytkownik może skontaktować się z lokalnym autoryzowanym partnerem firmy Sinexcel w celu uzyskania wsparcia technicznego.

Producent: Shenzhen Sinexcel Electric Co., Ltd. Add: 6th Building, 2nd District, Baiwangxin High-tech Industry Park, Songbai Road, Nanshan District, Shenzhen. Postcode: 518000 Website:www.sinexcel.com Hotline: +86-755-86511588 Fax: +86-755-86513100 E-mail:service@sinexcel.com

Dytrybutor:

DOSTĘPNE MODELE SVG 30kVar.

1	Sinecxel 30 SVG 43L/RL	Montaż w obudowie RAC, wykonanie 3-fazowe, 3- przewodowe z wyświetlaczem LCD wbudowany w pojedyncze urządzenie
2	Sinecxel 30 SVG 44L/RL	Montaż w obudowie RAC, wykonanie 3-fazowe, 4- przewodowe z wyświetlaczem LCD wbudowany w pojedyncze urządzenie
3	Sinecxel 30 SVG 43L/RE	Montaż w obudowie RAC, wykonanie 3-fazowe, 3- przewodowe z wyświetlaczem LED do sterowania modułami pracującymi równolegle
4	Sinecxel 30 SVG 44L/RE	Montaż w obudowie RAC, wykonanie 3-fazowe, 4- przewodowe z wyświetlaczem LED do sterowania modułami pracującymi równolegle

WSKAZÓWKI BEZPIECZEŃSTWA

Niniejsza instrukcja zawiera opis instalacji urządzenia oraz podstawowej parametryzacji Sinexcel SVG 30400V. Proszę zapoznać się z niniejszą instrukcją przed przystąpieniem do instalacji urządzenia, zwracając szczególną uwagę na opis zasad bezpieczeństwa.

Sinexcel SVG 30 400V może być podłączany oraz uruchamiany tylko przez wykwalifikowany personel, wyznaczony przez producenta lub autoryzowanego dystrybutora. W innym przypadku może stanowić zagrożenie dla życia ludzi lub doprowadzić do uszkodzenia urządzenia. Uszkodzenie urządzenia spowodowane złym podłączeniem urządzenia, nie jest objęte gwarancją. Sinexcel 400V SVG służy wyłącznie do celów komercyjnych / przemysłowych i nie może być stosowany jako sprzęt podtrzymujący życie.

Ten produkt jest urządzeniem SVG klasy A i może powodować zakłócenia radiowe, gdy jest używany do oszczędzania energii elektrycznej w domach.

Te urządzenie spełnia standardy CE 73/23 & 93/68 (bezpieczeństwo w sieciach niskiego napięcia), 89/336 (EMC) oraz normy EMC (C-Tick) obowiązujące w Australii i Nowej Zelandii.

Więcej szczegółów w rozdziale I – Specyfikacja produktu.

Urządzenie należy instalować zgodnie z wytycznymi niniejszej instrukcji oraz z wykorzystaniem dedykowanych do danego modelu akcesoriów.

Konserwacja wewnętrznych części urządzenia powinna być przeprowadzana odpowiednimi i spranymi narzędziami przez profesjonalny personel. Wszystkie elementy i części, które są zamknięte w oplombowanych obudowach i muszą zostać otwarte przy pomocy narzędzi, nie podlegają konserwacji przez użytkownika.

Urządzenie SVG w pełni spełnia standardy bezpieczeństwa sprzętu w strefie roboczej. W SVG występują elementy pod napięciem. Dostęp do nich ma tylko personel serwisowy. Elementy pod napięciem mają obudowę ochronną, którą należy otworzyć za pomocą narzędzi, dlatego możliwość dotknięcia niebezpiecznych elementów jest ograniczona. Urządzenie nie stanowi zagrożenia, jeśli jest używane zgodnie z odpowiednimi przepisami i procedurami opisanymi w instrukcji.

Spis treści

I. Informacje o urządzeniu.

1. Opis produktu.

Sinexcel SVG30 jest urządzeniem dedykowanym do dynamicznej kompensacji mocy biernej w sieciach niskiego napięcia 400V. Całkowita moc jednego modułu to 30kVar. Urządzenie może generować do sieci prąd kompensacji o określonej amplitudzie oraz przesunięciu fazowym prądu względem napięcia, w celu poprawy współczynnika mocy.

1.1. Dane techniczne

Tabela 1. Parametry techniczne urządzeń SVG

	SVG			
	400V			690V
	SVG 015/030	A/SVG 050	A/SVG 100	A/SVG 50/75/95/110
	Parametry urządzenia			
Zakres napięć	228V ~ 456V			483V ~ 793V
Typ sieci	3- fazowa 3-przewodow	a lub 4-przewodowa	1	
Czestotliwość	50/60HZ (range : 45Hz	~62Hz)		
Połaczenie				
modułów	Nie limitowana liczba me	odułów		
równoległych				
Zakres prądów				
przekładników	150/5A ~ 30000/5A			
pomiarowych				
	Wskaźniki efektywności	i		
Operating modes	Kompensacja mocy bieri	nej oraz symetryzacj	a obciążenia	
Maksymalna moc	15/20kV/Ar	50kV/Ar	100k)/Ar	50 / 75 / 95 /
modułów mocy	15/SORVAI	JORVAI	IOOKVAI	110kVAr
Czas odpowiedzi	<5ms			
Zakres				
parametryzacji	od -1 do +1			
współczynnika	00 100 1			
mocy				
Algorytm	kompensacia chwilowei	i mocy biernei poien	nnościowei i indukcvin	nei
sterowania	······p •···••j= •····••	,		,
Częstotliwość	do 20kHz			
przełączeń				
Sprawność	≥97%			
Maksymalna	15%			
wartosc IHDu [%]				
Zahazniaczania	zabezpieczenie nad / po	d napięciowe, zabez	pieczenie zwarciowe,	zabezpieczenie przed
Zabezpieczenia	odwróceniem mostka fa	lownika, zabezpiecz	enie przed nadmierną	kompensacją
Złącza				
komunikacyjne	złącze RS485 i RJ45 Ethe	ernet		
Protokoły	Mardless DTU Mardless T			
komunikacyjne	Modbus RTU, Modbus T	CP/IP		
Wyświetlacz	4.3" HMI (LCD panel); 7"	' HMI (centralny pan	el sterownia dla wielu	ı modułów)
Mieisce				
podłączenia	wykonanie wnętrzowe			
Stopień ochrony	IP20 lub IP21			
Sposób montazu	Montaż na ścianie lub ra	ick		
Predkość			-	
wymuszonego	222 I/s		405 l/s	
obiegu powietrza	,, -			
Poziom hałasu	< 65dB			
Wymiary (mm)	500 x 557 x 190		500 500 000	
wykonanie RACK			500 x 520 x 269	
Wymiary (mm)	1		500 070 170 ⁽	
wykonanie	500 x 191 x 582		500 x 270x470/	
naścienne			500x270/510	
Waga	21kg	35kg	48kg	
Kolor	RAL7035 Light Grev	-	-	
		OWF		
Wysokość NPM				
pracy	≤1500m (obniżenie war	tości sprawności o 1	% na 100m w przedzia	ale od 1500m do 4000m)

USŁUGI INŻYNIERSKIE

SERWIS

Sąd Rejonowy w Toruniu, VII Wydział Gospodarczy Krajowego Rejestru Sądowego, KRS 0000240757, Regon 140144905, NIP 5252336245

-	
Temperatura	-10°C40°C (> 45°C obniżenie sprawności o 1 % na każdy °C)
Wilgotność	595 % bez kondensatu
Środowisko	
elektromagnetyczn	Przewodzone EMC, EN 61000-6-4:2007+A1:2011 EN 61000-6-2:2005
е	
Ochrona PCBA	Powłoko konformalna
	CERTYFIKATY ZGODNOŚCI
Normy	UL 508 UL 508 C EN 61000-6-2 EN 61000-6-4 EN 50178: 1998 CSA C22.2 No 14
Certyfikaty	CCS DNV RINA BV LR UL CETLUS (CSA C22.2,UL508) CE (DNV RINA BV LR just for AHF)

II. Instalacja urządzenia

2.1. Wymiary urządzenia

Wymiary urządzenia Sinexel SVG 30kVar przedstawione są na rysunkach poniżej.

Dostępne jest równoległe połączenie wielu modułów montowanych w obudowie i na ścianie lub panelu pojedynczych modułów. Metodą rozpraszania ciepła jest inteligentne chłodzenie powietrzem; kanał powietrzny modułu montowanego w szafie wyposażony jest w przedni wlot powietrza i tylny wylot powietrza; kanał powietrzny modułu naściennego jest wyposażony w dolny wlot powietrza i górny wylot powietrza; całkowity wymiar i wymiar instalacyjny pokazano odpowiednio w tabeli 1.

SVG 30kvar – Wersja RACK

SVG 30kvar – Wersja montażu na ścianie

2.2. Podłączenie urządzenia

Urządzenie należy podłączyć przewodami do zacisków A,B,C,N i PE. Do zacisków A (+;-), B (+;-),C (+;-) należy podłączyć przewody przekładników prądowych.

Rys. 2 Schemat podłączenia urządzenia z przekładnikami od strony obciążenia.

Sąd Rejonowy w Toruniu, VII Wydział Gospodarczy Krajowego Rejestru Sądowego, KRS 0000240757, Regon 140144905, NIP 5252336245 Kapitał zakładowy w wysokości 50 000,00 zł, wpłacony w całości

Raiffeisen Bank Polska S.A., konto nr 40 1750 1208 0000 0000 0784 5669

2.3. Wybór zacisków oraz dobór przewodów.

Podczas okablowania użytkownik musi wybrać odpowiedni przewód

i podłączyć do zacisku zgodnie ze schematem. Okablowanie każdego terminala patrz rysunek 2. Skorzystaj z tabeli wyboru zalecaną przez naszą firmę, aby wybrać średnicę przewodów zasilających oraz przewodów do przekładników prądowych.

Tabela 2. Zalecane komponenty do podłączenia SVG/ASVG

SVG 30kVar	
Zakres prądu	45A
Przewody zasilające	A/B/C/N/PE : 35mm^2, rekomendowany
	przewód PE: 16mm^2
Przewody do	Poniżej 15m: RVVSP 2X2,5MM^2;
przekładników	15m-30m: RVVSP 2x4mm^2, powyżej 30m należy
prądowych	skontaktować się z producentem.
Zakres prądu	150/5 – 10000/5
przekładników	
prądowych	
Zakres prądu	100A
wyłącznika	
(zabezpieczenie)	
Uwagi	Jeżeli w pomieszczeniu występują dodatkowe
	ograniczenia dotyczące temperatury przewodów,
	specyfikacja przewodów zostanie dodana.

UWAGI DODATKOWE

Jako urządzenia zabezpieczające w rozdzielnicy można zastosować:

- bezpieczniki topikowe z wkładkami topikowymi o charakterystyce gG/gL lub
- wyłączniki wyposażone w wyzwalacze przeciążeniowe lub

• wyłączniki współpracujące z bezpiecznikami topikowymi.

2) Jako przewody zaleca się zastosowanie jednożyłowych lub wielożyłowych przewodów giętkich (np. LgY, OPd itp.).

3) Podane w powyższych tabelach przekroje przewodów zostały dobrane zgodnie z PN-IEC 60364-5523:2001 dla przewodów wielożyłowych ułożonych na korytkach perforowanych (sposób ułożenia F, Tab. 52-C9, kol.6) zabezpieczonych wkładkami topikowymi gG. W przypadku innego sposobu ułożenia przewodów lub innego typu zabezpieczeń, należy ponownie sprawdzić koordynację przekrojów przewodów i zabezpieczeń.

4) Wykonanie instalacji elektrycznej i przekazanie jej do eksploatacji powinno być udokumentowane protokółem odbioru technicznego, a szczegółowa dokumentacja powykonawcza oraz protokół pomiarów skuteczności ochrony przeciwporażeniowej powinny być udostępnione instalatorom przed przystąpieniem do prac związanych z przyłączeniem i uruchomieniem urządzenia SVG/ASVG.

Podłączenie przewodów przekładników prądowych:

- Wejście A 400V faza A przewody żółty
- Wejście B 400V faza B przewody zielone
- Wejście C 400V faza C przewody czerwone

- Złączę N – złącze przewodu neutralnego (tylko dla wykonania 3-fazowego, 4-przewodowego).

- Złącze PE - ponieważ w systemie stosowana jest metalowa obudowa, system należy uziemić przez terminal PE, aby uniknąć wypadków zagrażających bezpieczeństwu obsługi.

Dopuszczalny maksymalny prąd listwy zaciskowej przewodów CT wynosi 5A.

Złącza EPO i RS-485 są używane do komunikacji w przypadku połączenia równoległego kilku urządzeń i stworzenia scentralizowanego systemu monitorowania. Złącze RS 485 zalecane jest do podłączenia 7" panelu do sterowania wszystkimi modułami. Przekaźnik cyfrowy jest wykorzystywany przez panel sterowania do identyfikacji ustawień oraz parametrów pracy poszczególnych modułów pracujących równolegle. Przekaźnik cyfrowy nie jest wykorzystywany w przypadku pracy pojedynczego modułu.

2.4. Dobór przekładników prądowych.

Dokładność przekładników prądowych.

Przekładnik prądowy, jako zewnętrzny komponent wymagany podczas instalacji urządzenia odgrywa bardzo istotną rolę w prawidłowej pracy kompensatora aktywnego SVG (ASVG). Klasa dokładności przekładnika prądowego powinna być w zakresie 0,2 (przekładnik z rdzeniem nie otwieranym) do 0,5 (przekładnik z rdzeniem otwieranym). W przypadku zastosowania przekładników o niższej klasie dokładności, praca urządzenia może być nie prawidłowa.

Dobór prądu przekładnika prądowego.

Dla SVG 30kVar zakres wartości prądu pierwotnego przekładnika prądowego to 150A-10000A. Stosunek przekładnika prądowego wybiera się zgodnie z prądem rzeczywistego obciążenia; zaleca się wybrać 1,5-krotność maksymalnego prądu występującego podczas pracy. Przy doborze przekładnika zgodnie z zaleceniem producenta zapewnia najdokładniejszą prace urządzenia.

Przykład:

Prąd maksymalny obciążenia 1000A.

Prąd pierwotny przekładnika prądowego 1500-2000A

Prąd wtórny przekładnika prądowego 5A.

Uwaga: Przekładnik prądowy można wybrać z otwieranym lub nie otwieranym rdzeniem. Przekładnik prądowy z otwieranym rdzeniem można łatwo zainstalować, zaś z rdzeniem całkowitym można zainstalować, gdy istnieje możliwość odłączenia zasilania i rozpięcia obwodu. Przy wyborze przekładnika prądowego należy sprawdzić dopuszczalną wartość przekładni dla wybranego modelu urządzenia Sinexcel SVG; przed uruchomieniem sprawdź, czy przekładnia przekładnika prądowego wprowadzona w ustawieniach jest zgodna z wartością przekładni rzeczywistego zainstalowanego przekładnika.

Podłączenie przekładników prądowych.

Do podłączenia przekładników prądowych rekomendowane jest wybranie przewodów ekranowanych skręconych parami. Podłączenie odbywa się odpowiednio z trzech grup przewodów (żółty+czarny, zielony+czarny, czerwony+czarny). Każda grupa jest ze sobą skręcona. Po podłączeniu przewodów do zacisków przekładnika prądowego, należy odpowiednio podłączyć przewód żółty do zacisków fazy A, zielony przewód do fazy B, a czerwony do zacisków fazy C. Na przykładzie podłączenia fazy pierwszej wykorzystując przewód żółty opisany został poniżej schemat podłączenia zacisków przewodów do przekładnika prądowego. Przewód żółty podłączamy do zacisku przekładnika z oznaczeniem S1, a przewód czarny do zacisku S2. W innym przypadku, urządzenie nie będzie prawidłowo kompensować mocy biernej. Dobór przekroju przewodów do przekładników prądowych zależy od odległości podłączenia przekładników i urządzenia. Opis złączy CT i sygnałów komunikacyjnych znajduje się w Tab. 3. Przewody CT łączymy szeregowo, natomiast komunikacyjne z RS 485 i EPO powinny być połączone równolegle. Złącza przekładników prądowych przedstawione są na rysunku 3. W przypadku podłączenia równoległego modułów z panelem centralnym 7" należy ustawić przekaźnik cyfrowy "dial switch" zgodnie z tabelą 3.

Rys.3. Złącza dostępne na module AHF(SVG).

Tabela 3. Opis złączy.

/	
CT_A	Wejście uzwojenia wtórnego S1 przekładnika prądowego z fazy L1
CT_A_ GND	Wejście uzwojenia wtórnego S2 przekładnika prądowego z fazy L1
CT_B	Wejście uzwojenia wtórnego S1 przekładnika prądowego z fazy L2
CT_B_	Wejście uzwojenia wtórnego S2 przekładnika prądowego z fazy L2

Sąd Rejonowy w Toruniu, VII Wydział Gospodarczy Krajowego Rejestru Sądowego, KRS 0000240757, Regon 140144905, NIP 5252336245

CT_C Wejście uzwojenia wtórnego S1 przekładnika prądowego z fazy L3 CT_C_ Wejście uzwojenia wtórnego S2 przekładnika prądowego z fazy L3 GND EPO_A Zewnętrzne połączenie na końcu przycisku EPO bez polaryzacji. Aby zrealizować komunikację sygnału między modułami, gdy nie są podłączone do zewnętrznego panelu sterowania. EPO B Zewnętrzne połączenie na końcu przycisku EPO bez polaryzacji 485+ RS-485 sygnał (A) do podłączenia sygnału centralnego monitoringu 485-RS-485 sygnał (B) do podłączenia sygnału centralnego monitoringu 485P+ RS-485 sygnał (C) do podłączenia sygnału bacground monitoringu 485P-RS-485 sygnał (B) do podłączenia sygnału bacground monitoringu CAN_H Funkcja rezerwacji - Kanał CAN CAN_L

Podłączenie urządzeń do pracy równoległej.

W przypadku łączenie modułów do pracy równoległej z panelem 7", należy połączyć ze sobą złącza RS 485+ i 485- oraz GND_EPO. Podczas połączenia równoległego modułów należy włączyć szeregowo rezystancję 120 omów między 485+, a 485- do zacisków od góry urządzenia. W przypadku łączenia równoległego modułów z wyświetlaczami 4,3" należy tylko zbudować odpowiedni układ połączeń przekładników prądowych.

Dostępne są dwie metody podłączenia EPO:

W pierwszej metodzie stosuje się centralny system sterowania poprzez panel 7" Sinexcel; w tym przypadku należy podłączyć tylko przycisk zatrzymania awaryjnego do systemu monitorowania, a następnie odpowiednio podłącz EPO A i GND EPO modułów połączonych równolegle.

W drugiej metodzie nie stosuje się centralnego systemu monitorowania; w tym momencie należy podłączyć przycisk zatrzymania awaryjnego tylko do EPO_A i EPO_B pokazanych na rysunku 3, aby zrealizować zatrzymanie awaryjne. W trybie równoległym numer urządzenia każdego modułu podłączonego równolegle należy ustawić za pomocą przekaźnika cyfrowego "dial switch" pokazanego na rysunku 3. Przekaźnik cyfrowy składa się z 4 złączy, jednak podczas parametryzacji należy wykorzystać tylko 3 pierwsze. Ostatni zacisk jest zarezerwowany dla producenta. Odpowiednie ustawienie wejść przekaźnika cyfrowego umożliwia konfigurację do 8 urządzeń. Ustawienie odpowiedniej wartości należy dokonać zgodnie z poniższą tabelą 4.

Tabela 4 . Schemat ustawienia przekaźnika cyfrowego "dial switch".

CT0	CT1	CT2	Machine No.
OFF	OFF	OFF	1
ON	OFF	OFF	2
OFF	ON	OFF	3
ON	ON	OFF	4
OFF	OFF	ON	5
ON	OFF	ON	6
OFF	ON	ON	7
ON	ON	ON	8

Ш. Moduł sterowania

3.1. Parametryzacja urządzania przy pomocy HMI 4,3".

Kompensator SVG jest wyposażony w 4" dotykowy panel sterowania. Wyświetlacz LCD składa się głównie z menu do parametryzacji, wyświetlania parametrów elektrycznych od strony sieci i od strony odbiorników, informacji o alarmie oraz funkcji załączenia i wyłącznie zasilania. Przed pierwszym załączeniem urządzania należy wykonać parametryzację. Jeżeli po włączeniu zasilania w okresie ok. 2 min nie wyświetli się żaden alarm na wyświetlaczu można przejść do parametryzacji urządzenia. Jeżeli panel nie zarejestruje żadnych działań, przejdzie w stan uśpienia. W takim przypadku, aby uruchomić ponownie podświetlenie należy dotknąć ekran w dowolnym miejscu. Zakres wyświetlanych parametrów oraz wygląd menu do parametryzacji jest zależny od wybranego modelu urządzenia Sinexcel. Uwaga: Wszystkie wymagane do uruchomienia urządzenia ustawienia, są dostępne w menu panelu LCD i powinny zostać wprowadzane przez przedstawicieli producenta lub przeszkolony do tego personel zgodnie z tabelą 7 i 8. Parametry przedstawione na zdjęciach są parametrami zalecanymi do ustawienia podczas parametryzacji urządzenia SVG.

INŻYNIERSKIE

Sąd Rejonowy w Toruniu, VII Wydział Gospodarczy Krajowego Rejestru Sądowego, KRS 0000240757, Regon 140144905, NIP 5252336245 Kapitał zakładowy w wysokości 50 000,00 zł, wpłacony w całości Raiffeisen Bank Polska S.A., konto nr 40 1750 1208 0000 0000 0784 5669

PRODUKTY

HASŁO DO USTAWIEŃ KOMPENSATORA – 080808

3.2..Podstawowa parametryzacja kompensatora aktywnego SVG na wyświetlaczu 4,3"

Po wejściu do menu "Parametryzacji" mamy do dyspozycji następujące parametry, które należy ustawić przed uruchomieniem urządzenia: parametry oznaczone kolorem zielonym muszą zostać wprowadzone. Pozostałe parametry można pozostawić zgodnie z ustawieniami fabrycznymi.

Sąd Rejonowy w Toruniu, VII Wydział Gospodarczy Krajowego Rejestru Sądowego, KRS 0000240757, Regon 140144905, NIP 5252336245 Kapitał zakładowy w wysokości 50 000,00 zł, wpłacony w całości Raiffeisen Bank Polska S.A., konto nr 40 1750 1208 0000 0000 0784 5669

INŻYNIERSKIE

SERWIS

Sinexcel	20-22-20 20-22-20	e Filter – nie należy zmieniać wartości, jeżeli układ nie jest wraz z zewnetrznymi filtrami pasywnymi.
Main Ext.Passive Filter Data PT Ratio 1.00 Settings THDU Limit 0.00 Unbalance Limit 0.00 Derating Coeff 1.00	PT Ratio – p przypadku THDU Limit przeroczeni wyłączenie Drzeroczeni wyłączenie wyłączenie	parametr przekłądni tranformatora pośredniczącego w podłączenia urządzenia do sieci SN. – wartość limitu poziomu odkształceń w napięciu, po iu którego urządzenie ma zostać odłączone. Wartość 0 oznacz tej opcji. Limit - wartość limitu poziomu asymetrii napięcia, po iu którego urządzenie ma zostać odłączone. Wartość 0 oznacz tej opcji.
Sinexcel	2014-10-09 11:40:30 Stop	eff – współcznynnik wykorzyastania modułu mocy. Krok 1. Settings – ustawienia
Main Data Settings Record	Clear Fault	Krok 2. Monitor Parameter – Parametry wyświetlacza
Sinexcel	2016-07-13 11:33:27 Stop	
Data Monitor Parameter	Network	
Settings Baud Rate 1920 Record Language Eng		Krok 3. Wybierz język z pośród dostępnych.

Tabela 5. Opis parametrów ustawień urządzania SVG

Opcje	Wartość	Opis oznaczenia
Dane	Napięcie sieci	Napięcie fazowe sieci.
	Prąd kompensacji	Prąd generowany przez kompensator
	Prąd sieci	Prąd pobierany z sieci
	Prąd obciążenia	Prąd odbiornika
	Współczynnik PF sieci	Współczynnik mocy od strony sieci.
	Współczynnik PF obciążenia	Współczynnik mocy od strony odbiorów.
Status	Kod Alarmu	Oznaczenie zarejestrowanego alarmu / błędu
	Status operacji	Normalny- praca prawidłowa. Stop- SVG w stanie czuwania,
		Błąd – urządzenie jest uszkodzone.
Ustawienia	Przekładnia CT	Przekładnia przekładnika prądowego.
	Prąd całkowity	Prąd całkowity modułu
	Lokalizacja CT	Umiejscowienie przekładników prądowych (od strony
		zasilania lub od strony odbiorników)
	Tryb załączania	Sposób uruchomienia (Ręczny lub automatyczny)
	Układ sieci	Układ sieci, w której urządzenie zostało podłączone.
	Zakres	Kompensacja mocy biernej, filtracja harmonicznych lub
	kompensacji	symetryzacja obciążenia.
	Kontroler	Parametr zarezerwowany przez producenta. Użytkownik
	parametrów	nie może zmienić wartości.
Załącz	Planowe wyłączenie	lub załączenie
ON/OFF		
Wyświetlacz		Opis

.

Sąd Rejonowy w Toruniu, VII Wydział Gospodarczy Krajowego Rejestru Sądowego, KRS 0000240757, Regon 140144905, NIP 5252336245

SERWIS

www.aniro.pl

Sinexcel	SVG nazwa serii
01.12.2010	Data aktualna
09:00:00	Czas aktualny
Normalny	Zielone światło – SVG pracuje prawidłowo lub w standby .
Czuwanie / Uszkodzony	Czerwone światło – SVG jest uszkodzony

Tabela 6. Opis ustawień parametrów ASVG

in parametrow A	570				
Nazwa menu	Wartości		Opis		
Napicie	Wartość RMS	Napięcia	Napięcie fazowe [V]		
		Częstotliwości	Częstotliwość [Hz]		
		THDU	Całkowity współczynnik odkształceń sieci.		
	L1/L2/L3 – kształt pr	rzebiegu	Wykres oscyloskopowy przebiegu wartości		
		-	w fazach L1/L2 i L3.		
Prad	Prad obciażenia	Wartość prądu	Prad w każdej fazie [A]		
·		Współczynnik	Współczynnik mocy		
		PF obciażenia			
		THDI	Całkowity współczynnik odkształceń pradu		
			THDi		
		Kształt	Wykres oscyloskopowy przebiegu pradu		
		przebiegu	······································		
	Prad kompensacii	Wartość RMS	Wartość pradu generowana przez		
	r iqu nompeniougi	pradu	kompensator		
		kompensacii			
		Zakres	Stosunek wartości pradu generowanego		
		kompensacii	przez kompensator do całkowitego pradu		
		Rempendacji	kompensatora.		
		Kształt	Wykres oscyloskonowy pradu w fazie 11/12 i		
		przebiegu	13.		
		pradu			
	Prad sieci	Wartość RMS	Wartość pradu pobierana z sieci		
	i iqu sicci	nradu sieci			
		Wsnółczynnik	Wartość współczynnika mocy od strony sieci		
		PF sieci			
		тны	Całkowity współczypnik odkształceń pradu		
		mbi	THDi sieci		
		Kształt	Wykres oscyloskopowy pradu w fazie 11/12 i		
		nrzehiegu			
		pradu			
Analiza		THDI Sieci	Współczypnik odkszt. Pradu od strony sieci		
widma		THDI obciażenia	Współczynnik odkszt. Prądu od strony sieci		
Widilia		TTDI Obciązema	obciażenia		
		тырн	Współczypnik odkształconia papiecia		
	Spoktrum	Spoktrum barmor	nicznych przed i na komponsacji		
	harmonicznych	Spektrum narmor	nezných přzed i po kompensácji.		
Temperatura	Temp 1: Temp 2:	Temperatura prze	kształtnika w poszczególnych fazach		
remperatura	Temp3.	remperatura prze			
	Temp J: Temp 5:	Temperatura cześ			
	Temp.4, Temp.5,	remperatura częs	ici muukeymej		
Ustawienia	Ustawienia	Tryh pracy	Ustawienie priorytetu pracy 7 pośród		
Ustawiciild	narametrów	inyo pracy	dostennych: kompensacii mocy hiernei		
	systemu		filtracii harmonicznych symetryzacii		
	Systema		obciażenia.		
		Przekładnia CT	Wartość nierwotna pradu przekładnika		
			nradowego		
		Lokalizacia CT	Lokalizacia przekładników pradowych		
		Algorithm	Trzy dostopno algoritmy: Inteligentry		
		filtracii	Sokwongyiny i Całkowity		
		harmonicznych			
		indywidualha	wybor wybranych narmonicznych do		
			kompensacji.		
		liosc modułów	nosc modułow mocy połączonych		
		podrzędnych	rownolegie.		
		Całkowity prąd	Wartość prądu wszystkich modułów mocy.		
		Tryb załączania	Automatyczny lub ręczny.		
	Wyświetlacz	Jasność LCD	Poziom jasności wyświetlacza LCD		
		Czas	Ustawienia czasu		
	1	Data	Listawienia daty		

SERWIS

Sąd Rejonowy w Toruniu, VII Wydział Gospodarczy Krajowego Rejestru Sądowego, KRS 0000240757, Regon 140144905, NIP 5252336245

www.aniro.pl

		Język	Ustawienia dostępnego języka menu		
	Komunikacja	RS485 adres	Adres portu komunikacyjnego		
		Zakres RS 485	Zakres częstotliwości portu RS 485		
		Protokół RS 485	Protokół komunikacyjny przypisany do		
			złącza RS485		
		Adres IP	Wartość ustawiana przez komputer		
		Bramka IP	Wartość ustawiana przez komputer		
		Podmaska IP	Wartość ustawiana przez komputer		
Zdarzenia /	Aktualne alarmy o	Informację o aktu	alnych alarmach zarejestrowanych przez		
Alarmy	zdarzeniach	urządzenie.			
	Historia alarmów	Informację o histo	orycznych alarmach zarejestrowanych przez		
		urząuzerne.			
Załączanie	Power On	Potwierdzenie załączenia ON			
On/Off	Power Of	Potwierdzenie wy	łączenia OFF		
	Wyczyść	Wyczyść historię z	darzeń zarejestrowanych		
	zdarzenia				

.

SERWIS

3.3 Podstawowa parametryzacja przy użyciu panelu 7".

Powyżej w tabelach 6 i 7 opisane zostały podstawowe parametry wymagane podczas uruchamiania urządzeń SVG oraz ASVG. Poniżej na zdjęciach przedstawione zostały ekrany menu panelu 7" calowego dostępnego jako opcja przy zakupie urządzenia lub jako centralny system sterowania do modułów pracujących równolegle.

Hasło do uruchomienia Menu parametryzacji: 080808

		ASIC I	HARMO.	POWER	WAVES	ŀ	vo	SYSTEM	
		RMS (A)	PF	THDI(%)			Vol. (V)	Fre. (Hz)	THDU(%
10000	L1	106.3	0.765	1.9		L1	223.1	50.0	2.5
Grid	L2	94.0	0.680	2.4	Grid	L2	224.2	50.0	2.4
curr.	L3	87.6	0.638	2.2	Volt.	L3	225.4	50.0	2.1
	Ν	22.5							
		RMS (A)	PF	THDI(%)			RMS (A)		Load Rat
Load	LI	109.4	0.735	26.5	Como	1.1	28.0		27.91
Curr.	L2	97.7	0.645	30.3	Curr.	12	28.1		28.00
	L3	91.5	0.598	32.1		13	27.8		27.72
		_							
다. Senera	ettin.	sv	STEM	сомм. н	IARMO.	PRE	FER.	DEBUG	::
Genera 0	Settin. al Setti peratio	sv ing on Mode	STEM	сомм. н	Target Factor	PRE	FER. Pr <u>1</u>	debug .0	
Genera O	Settin. al Setti peratio omp. F	ing on Mode Rate	LI.0	сомм. н ic Comp.	Target Factor Total (PRE Powe	er <u>1</u> ity <u>1</u>	DEBUG .0 00.0	
Genera O C	Settin. al Setti peratio omp. F omp. N	s∨ ing on Mode Rate Mode	Harmon	comm. ⊢ ic Comp, i ial,	Target Factor Total C CT Rat	PRE Powe Capac	FER. er <u>1</u> ity <u>1</u>	DEBUG .0 00.0 00.0	

- **Operation mode** Tryb pracy (Reactive mode (SVG) –Kompensacja mocy biernej; Harmonic mode (AHF) Filtracja harmonicznych)
- Power ON Mode Uruchamianie (Automatic Automatyczny; Manual Ręczny;)
- Comp. Rate. (1.0)
- Comp. Mode Model sterowania, (Intelligent Inteligentny, Sequential Sekwencyjny, All)
- Target Power Factor Współczynnik mocy
- Total Capacity Prąd modułu (400V 150A AHF prąd 150A, 400V 100kvar SVG prąd 150A)
- **CT Ratio** Prąd przekładnika (pierwotny)
- Slave Module Quantity Ilość modułów podrzędnych

📑 Settin. 🛛 🛛	CON	им. н	ARMO.	PREFER.	DEBUG		1
- Power On Mode	Manual		Slave I Quanti	Module	1.0		
Grid Vol. Adjust	Disable		Out Cu	rr. CT Ratio	600.0		
PT Ratio	1.0		CT Loc	ation	Load	-	-
Ext. Passive Filte	er . 11		CT Sec Conner	condary	Series		_
Input Curr. Abnormal	Enable		1st An	gle Biasing	0.0		

- Grid Vol. Adjust Regulacja napięcia sieci.
- PT Ratio Współczynnik mocy transformatora (ustawiany w przypadku pracy filtra z transformatorem)
- Ext. Passive Filter Zewnętrzny filtr pasywny (parametr do wyboru tylko przez serwis)
- Input Curr. Abnormal –
- Out Curr. CT Ratio –
- CT Location lokalizacja przekładników prądowych, (Load Obciążenie; Grid Zaislanie).
- CT Secondary connection Połączenie uzwojeń wtórnych CT (Series Szeregowo)

Sąd Rejonowy w Toruniu, VII Wydział Gospodarczy Krajowego Rejestru Sądowego, KRS 0000240757, Regon 140144905, NIP 5252336245 Kapitał zakładowy w wysokości 50 000,00 zł, wpłacony w całości Raiffeisen Bank Polska S.A., konto nr 40 1750 1208 0000 0000 0784 5669

USŁUGI INŻYNIERSKIE

• 1 st. Angle Biasing -

W przypadku zarządzania poprzez 7-calowy panel SVG o napięciu 400 V 500 kvar (5 * 100 kvar) całkowita moc wynosi 750 A, a ilość modułów to 5. Należy pamiętać o ustawieniu ilości modułów na zaciskach "Dial Switch" zgodnie z oznaczeniem w tabeli 4. Dla 400 V 300 kvar (3 * 100 kvar)

7-calowy system SVG LCD, całkowita pojemność wynosi 450A ponieważ jednostka to A, należy przeliczyć moc na wartość prądu zgodnie z wzorem I = Q / 1,732U.

IV. Instrukcja rozwiązywania problemów

4.1. Podłączanie urządzenia po naprawie/serwisie.

Postępowanie w przypadku złej pracy urządzenia oraz ponowne uruchamianie. Postępuj zgodnie z poniższą instrukcją SVG100/ASVG100kVar.

- Upewnij się, że rozłącznik główny jest wyłączony, a na zaciskach urządzenia nie ma napięcia.

- Sprawdź poprawność podłączenia przewodów zasilających zgodnie z kolejnością faz.

- Sprawdź poprawność podłączenia przewodów przekładników prądowych.

- Sprawdź połączenie przewodu ochronnego z zaciskiem PE oraz innych przewodów uziemiających, w celu zabezpieczenia obsługi przed porażeniem.

4.2. Pierwsze kroki uruchomienia urządzenia

Po zakończeniu kontroli bezpieczeństwa zgodnie z powyższymi wytycznymi inżynier debuguje go, aby był w normalnym stanie, a następnie można go uruchomić w następujący sposób:

- Załącz rozłącznik główny urządzenia.

- Po podłączeniu napięcia, pod warunkiem, że SVG jest ustawiony na "Automatyczne uruchamianie", gdy warunek uruchomienia jest spełniony, system wyśle polecenie uruchomienia automatycznego. W przypadku, gdy SVG jest ustawiony na "Uruchamianie ręczne", użytkownik może sam uruchomić urządzenie, klikając ikonę uruchamiania w menu na wyświetlacz u LCD. Po kilkunastu sekundach urządzenie uruchomi się oraz wyświetli komunikat o poprawnym uruchomieniu lub wyświetli informację o alarmie.

4.3. Sposób wyłączania urządzenia.

Istnieją dwie metody wyłączenia urządzenia. Jednym z nich jest bezpośrednie odłączenie wyłącznika głównego, między SVG, a zasilaniem sieciowym. Ten sposób całkowicie wyłączy urządzenie. Oznacza to, że system nie jest zelektryfikowany i można przeprowadzić odpowiednią konserwację systemu. Drugim jest przeprowadzenie zamykania poprzez kliknięcie przycisku "wyłącz" w menu na wyświetlaczu LCD. W ten sposób wyłączona jest opcja kompensacji, natomiast złącza oraz urządzenie jest wciąż pod napięciem, a system sterowania jest w stanie gotowości. W tym przypadku niedozwolone jest otwieranie obudowy urządzenia oraz przeprowadzanie konserwacji lub napraw.

Opis komunikatów błędów. V.

Typ błędu	Kod	Opis błędu
Krótki błąd inwertera	0X01	Przekroczenie prądu IGBT.
		Np. Zwarcie w jednej z gałęzi mostka IGBT.
Błąd zasilania	0X03	Napięcie zasilania pomocniczego jest niższe niż
pomocniczego		ustawiona wartość. Gdy poprawna wartość nie wróci
(awaryjnego)		w ciągu 8us, w przypadku awarii
		zasilania, CPLD będzie bezpośrednio blokować impuls
		wyzwalający IGBT.
Podwyższona	0X06	Inwerter wyłączy się, gdy sygnał z czujnika temperatur
temperatura inwertera		wykaże wyższą niż dopuszcza temperatura pracy.
Ustawiony błędny zakres	0X07	Jeśli prąd jest ponad 1,5 razy większy od znamionowego
przekładników		prąd CT, ustawiona jest błędnie przekładnia CT lub nie są
prądowych		poprawnie podłączone.
Błąd przeciążenia	0X08	Prąd falownika osiągnął wartość ponad 150% prądu
falownik		znamionowego.
Błąd szyny DC	0X09	Napięcie na szynie DC jest zbyt wysokie.
Błąd odczytu	0X10	Dopuszczalny prąd urządzenia jest inny niż, 145A dla SVG
dostępnego prądu		100/ASVG100
urządzenia		
Błąd EPO	0X11	Błąd raportu EPO
Częstotliwość sieci z	0X0A	Częstotliwość sieci jest z poza zakresu 45-55Hz.
poza zakresu		
Napięcie sieci z poza	OXOB	Napięcie sieci jest z poza zakresu 138V-265V
zakresu		
Błąd wersji	0X0D	Wersja DSP jest niekompatybilna z oprogramowaniem
oprogramowania		CPLD.
Błąd ustawień	OXOF	 Strona podłączenia CT jest błędna i dopuszczalna moc
parametrów kontrolera		jest większa, niż pojedynczego urządzenia.
		 Dostępny prąd urządzenia jest większy niż połączone
		równolegle moduły.
		 - Łączny prąd jest większy niż 145A.
		 Napięcie na zaciskach wejściowych jest inne niż 380V.

Błędy i alarmy	Możliwa przyczyna	Rozwiązanie
Błąd komunikacji	Błąd komunikacji, między modułem sterującym, a filtrem aktywnym	Sprawdź czy przewody komunikacyjne są prawidłowo i bezpiecznie podłączone.
Przekroczona temperatura pracy	 Temperatura otoczenia zbyt wysoka. Przewody wentylacyjne zablokowane. Uszkodzony wentylator. 	Sprawdź po kolei każdą przyczynę.
Napięcie wejściowe jest z poza zakresu.	 Przewody zasilające urządzenie są błędnie podłączone w układzie 3 fazowym 3- przewodowym lub 4-przewodowym. Napięcie jest zbyt wysokie lub zbyt niskie. 	Sprawdź poprawność poprawność podłączenia przewodów zgodnie ze schematem w instrukcji, kolejność faz oraz poziom napięcia, czy jest w zakresie dopuszczalnych wartości.
Częstotliwość napięcia jest z poza zakresu.	Napięcie pomocnicze jest błędne.	Skontaktuj się z serwisem Sinexcel.
Zbyt wysoka wartość napięcia na szynie DC	Konwerter jest wyłączony lub nie można go włączyć z powodu wysokiego napięcia szyny DC	Skontaktuj się z serwisem Sinexcel.
Awaria zasilania pomocniczego	Awaria zasilania pomocniczego	Skontaktuj się z serwisem Sinexcel.
Brak prądu kompensacji	 Filtr AHF jest nie włączony. Przewody przekładników nie są podłączone lub są usztodzone 	Sprawdź, czy AHF jest włączony, sprawdź ustawienie współczynnika mocy, sprawdź położenie instalacji przekładnika prądowego i okablowania oraz czy przewód przekładnika prądowego jest bezpiecznie podłączony

Sąd Rejonowy w Toruniu, VII Wydział Gospodarczy Krajowego Rejestru Sądowego, KRS 0000240757, Regon 140144905, NIP 5252336245

USŁUGI INŻYNIERSKIE

www.aniro.pl

	Zakres kompensacji jest	
	ustawiona na zbyt niskim	
	poziomie.	
Błąd ustawienia	Odczytane parametry kontrolera nie	Skontaktuj się z serwisem Sinexcel
parametru	pasują do ustawionych parametrów.	
kontrolera		
Awaria -	Prąd kompensacyjny AHF przekracza	Sprawdź, czy moc aktywnego filtra harmonicznych odpowiada obciążeniu
przeciążenia	prąd znamionowy	
falownika		
Błąd ustawień	Błąd ustawienia przekładni przekładnika	Sprawdź, czy przewody przekładnika prądowego, kierunek przepływu prądu oraz
zakresu	prądowego	kolejność faz.
przekładników		
prądowych		

5.1. Rozwiązywanie problemów.

Awarie urządzenia można podzielić w następujący sposób.

Awaria spowodowana niewłaściwą obsługą użytkownika:

 - błędnie podpięte przewody przekładników prądowych, zamieniona kolejność faz lub błędne ustawienia parametrów, wszystkie te elementy należy sprawdzić podczas uruchamiania urządzenia. Jeśli efekt kompensacji jest słaby, ale nie ma żadnych ostrzeżeń, skontaktuj się z inżynierem produktu Sinexcel.

Jeśli na ekranie LCD wyświetlane są informacje ostrzegawcze, skontaktuj się bezpośrednio z inżynierem produktu Sinexcel.

Kontakt do serwisu: Aniro Sp. z o.o. Centrala w Toruniu ul. Chrobrego 64 87-100 Toruń

ANIRO Sp. z o.o. ul. B. Chrobrego 64 87- 100 Toruń tel. 56 657 63 63, aniro@aniro.pl

Tel: +48 56 657 63 63 aniro@aniro.pl

